Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Enlightened’ Atoms Stage Nano-Riot Against Uniformity

19.11.2008
Theorists say atoms in a crystal can be made to behave in an unexpected way, a way that can be exploited to create tiny computer components that emit less heat and new sensors to detect bio-hazards and medical conditions.

When atoms in a crystal are struck by laser light, their electrons, excited by the light, typically begin moving back and forth together in a regular pattern, resembling nanoscale soldiers marching in a lockstep formation.

But according to a new theory developed by Johns Hopkins researchers, under the right conditions these atoms will rebel against uniformity. Their electrons will begin moving apart and then joining together again repeatedly like lively swing partners on a dance floor.

Moreover, the researchers say, this atomic freestyle dancing can be controlled, paving the way for tiny computer components that emit less heat and new sensors to detect bio-hazards and medical conditions.

“By choosing particular atoms in the proper configuration and directing the right laser light at them, we could control the behavior of these ‘nano-dancers,’” said Alexander E. Kaplan, a professor in the Department of Electrical and Computer Engineering in Johns Hopkins’ Whiting School of Engineering. “The essential thing is, these are completely designable atomic structures.”

Kaplan and Sergei N. Volkov, a postdoctoral fellow in his lab, described this phenomenon in a paper published recently in the journal Physical Review Letters. The next step is for other researchers to conduct lab experiments in an effort to validate the theory and predictions advanced by Kaplan and Volkov.

Kaplan, an internationally renowned nonlinear optics expert who studies how matter interacts with strong light, said his and Volkov’s “nano-riot” idea runs counter to a widely accepted concept. For decades, Kaplan said, scientists have adhered to the Lorentz-Lorenz theory, which asserts that the atomic electrons in a crystal, exposed to a laser beam, will move back and forth in tandem in a uniform way under any conditions.

“But we’ve concluded that under certain circumstances, the nearest atoms will behave much differently,” he said. “Their electrons will move violently apart and come back together again, staging a sort of ‘nano-riot.’”

For this to happen, Kaplan said, several critical conditions must exist. First, the system must be very small, typically involving no more than a few hundred atoms, and the atoms must be arranged in a one-dimensional or two-dimensional configuration. The atoms must be grouped in a sufficiently close concentration; interestingly, though, this arrangement may allow more space between atoms than exists in a typical crystal. Also, the frequency of the laser driving the atoms must be closely tuned to one of the specific frequencies of the atomic electrons -- the so-called atomic resonance -- in the way that a radio receiver might be tuned to a particular station.

When these critical conditions are met, the interacting excited atomic electrons get strongly “coupled,” and their motion is affected by one another. The atomic dance partners begin to match or counter-match the motion of each other, while still being driven by the laser’s “music.”

When this occurs, the dancing atomic electrons form waves of collective motion. Kaplan calls these waves “locsitons,” based on the words “local” and “exciton,” the latter referring to a physics concept. Within the atomic systems envisioned by Kaplan and Volkov, these locsiton waves are strongly affected by the boundaries of these structures or any irregularities, such as holes. The presence of these boundaries results in size-related resonances, or highly excited motion at certain frequencies, resembling those of a violin string fixed at two end-points. In this case, the string’s end-points would be the boundaries of the group of atoms. A smooth violin string produces mostly a main tone, and nearby points of the string move in unison. But an atomic array more closely resembles a chain of connected beads, and with the right laser tuning, the neighboring beads, or atomic electrons, can oscillate counter to each other.

“Fortunately, once this atomic structure is built, the ‘dancing style’ of the atoms can be controlled by the laser tuning,” Kaplan said. “Furthermore, if the laser intensity is sufficient, we believe the atoms in this lattice will engage in so-called nonlinear behavior. That means they can be made to behave like switches in a computer. They will act like a computer’s memory or logic components, assuming the positions of either 1 or 0, depending on the initial conditions.”

Computer makers, trying to produce ever smaller metallic or semiconductor components, have run into problems related to the excessive release of heat. However, the nanoscale switch envisioned by Kaplan would be a dielectric, meaning it would involve no exchange of free electrons in the structure. Because of this, the proposed components would generate far less heat.

If their theory is confirmed, the Johns Hopkins researchers foresee other applications for these nanoscale atomic systems. The tiny lattices, they say, could be designed so that when a specific foreign bio-molecule enters a system, the atomic electron ‘dancing’ would stop. Because of this characteristic, they said, the system could be designed to trigger an alarm signal whenever a bio-hazard or perhaps a cancer cell was detected.

The research by Kaplan and Volkov was supported by a grant from the Air Force Office of Scientific Research.

Color images of the researchers available; contact Phil Sneiderman.

Related links:
Alexander Kaplan’s Web Site: http://psi.ece.jhu.edu/~kaplan/
Johns Hopkins Department of Electrical and Computer Engineering: http://w ww.ece.jhu.edu/

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>