Engineering electron pathways in 2-D-topological insulators

Schematic representation of the electronic behavior in the device described in the article. The arrows represent quantum channels where electrons propagate. Eectrons are allowed to change direction only at the central area, resulting under certain conditions in constructive interference. Credit: CIC nanoGUNE

A fascinating property of topological insulators is that while remaining insulating in the bulk, they are very good conductors at the edge. At those edges, electrons travel in quantum channels in either direction, like in a two- lane highway.

Also like on a highway, U-turns are forbidden: electrons on the edge cannot change direction without breaking the rules. The application of an external magnetic field lifts this prohibition and allows electrons to turn.

The recently published research, lead by Reyes Calvo, Ikerbasque Fellow at CIC nanoGUNE, and Fernando de Juan, currently at Rudolf Peierls Centre for Theoretical Physics, Oxford and joining the Donostia International Phisics Centre (DIPC) as Ikerbasque Fellow in 2018, reports the interplay of quantum edge states across a lateral junction in a HgTe quantum well, a canonical 2D topological insulator.

From their results, they extract new information on the fundamental properties of topological edge states and propose strategies to fine-tune their interaction.

“In our work, we test the consequences that allowing electrons to turn have in the conduction of our devices. We also show how under certain circumstances, electrons allowed to return seem to do it in an orderly manner, as if in some kind of round-about, generating a constructive interference.”, Calvo explains.

This work contributes new insight into the fundamental properties of the edge states and their conduction properties in 2D-topological insulators.

This kind of proposals to control the properties and interactions of these states are key for their application in the development of a new generation of electronic devices based on quantum fundamental properties of materials.

Media Contact

Irati Kortabitarte
i.kortabitarte@elhuyar.eus
34-943-363-040

Media Contact

Irati Kortabitarte EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors