Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Emission measurement: High-precision nanoparticle sensor developed


A research team based in Graz and Villach has developed an exhaust gas analyser that detects tiny particles faster and more accurately.

Diameter of under 0.2 micrometres

Pic 1: The newly developed APCplus exhaust gas analyser has 20 per cent more power in order to count tiny particles faster and more accurately.


Pic. 2: Simulated gas saturation of the aerosol-stream in the sensor


Reducing atmospheric particulate matter, including the nanoparticles emitted from internal combustion engines, is in the public interest. A team of researchers from CTR Carinthian Tech Research in Villach and AVL List GmbH in Graz has therefore developed a high-precision optical sensor that can even detect tiny particles with a diameter of under 0.2 micrometres (µm).

The size is particularly important because the smaller the particles are, the more harmful they are to health. A tailored, simulation-aided design process has enabled the particle counter to accurately detect the smallest of pollutants and measure them at three times the speed. At the same time, researchers improved the system’s overall stability and control.

Applications for this new development include AVL’s APCplus exhaust analysis product range, which has been on the market since autumn 2016. The device is used in automotive development, monitoring and exhaust gas analysis.

Integrative system modelling and co-design

Of all airborne pollutants, nanoparticles below 200 nanometres (nm) in particular are detected. It is a size that is exceptionally difficult to measure. Detecting the actual particulate emissions therefore requires accurate and reliable sensors. This involves counting the nanoparticles in the air or exhaust gas individually and not as total parameters.

To do so, the nanoparticles are fed into a supersaturated atmosphere. In it they act as condensation nuclei and create an aerosol stream where the droplets can be counted individually. This requires the interaction between the thermal, physical and chemical processes to be carefully managed in order to ensure reliable particle detection.

“We created a comprehensive 3D simulation model on the computer and compared it with experimental data. The challenge lay in the complexity of the measurement principle and mutual dependencies. Only when you research and develop extensively and systematically can the overall system be improved,” says Martin Kraft, CTR’s head of research in photonic system engineering.

More accurate and faster detection

Tristan Reinisch, Product Development Team Leader at AVL, believes research collaboration ultimately results in added value for users: “The nanoparticle sensor’s power has increased by 20 per cent. We thus achieve a high level of selectivity with reference to the nanoparticle diameter and obtain faster count results.” The APCplus nanoparticle counter was developed and produced in Austria. Other developments of this kind are planned.

Strategic research partnership

Research cooperation between AVL and CTR is planned in the long term. Initial basic research started in the first phase (2008-2014) of the COMET centre of excellence programme and is carrying on under the current programme (2015-2022) dedicated to ASSIC (Austrian Smart Systems Integration Research Center).

About CTR Carinthian Tech Research

CTR is the largest non-academic research centre in Carinthia and ranks among Austria’s leading research institutes in the area of smart sensors and systems integration. Its task and objective is to develop innovative sensor technologies (photonic, sensor, micro and nano systems as well as assembly, packaging and integration technologies) for industry and to integrate them in concrete applications. CTR research will therefore play a role in meeting society’s great challenges, such as energy, mobility, health, climate and security.

Services range from feasibility studies, simulations and tests to prototyping and system design. Established in 1997, CTR has filed over 80 patents and conducts research in regional, national and international projects. Research partners include ABB, AT&S, AVL List, Infineon Technologies, Lam Research, EPCOS, Philips Austria, Siemens, TIPS Messtechnik, the European Space Agency (ESA), Vienna University of Technology, Carinthia University of Applied Sciences, Klagenfurt University and Lausanne EPFL.

Weitere Informationen:

http://Further links:

Mag Birgit Rader-Brunner | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

Science & Research
Overview of more VideoLinks >>>