Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor


It is a general consensus that understanding of the normal state is a pre-requisite for understanding the superconductivity mechanism.

In conventional superconductors, superconductivity emerges from the normal state where the low energy excitations can be well described by the Fermi liquid theory. In the normal state, there is a well-defined Fermi surface and well-defined quasiparticles on the Fermi surface.

Recently, a research team led by Prof. Xingjiang Zhou from Institute of Physics, Chinese Academy of Sciences, has conducted high-resolution laser-based ARPES experiments on the superconducting gap and electronic structure in the optimally-doped (Ba0.6K0.4)Fe2As2 superconductor.

Credit: ©Science China Press

Recently, a research team led by Prof. Xingjiang Zhou from Institute of Physics, Chinese Academy of Sciences, has conducted high-resolution laser-based ARPES experiments on the superconducting gap and electronic structure in the optimally-doped (Ba0.6K0.4)Fe2As2 superconductor.

Credit: ©Science China Press

Superconductivity is realized by the instability of the Fermi surface and formation of electron Cooper pairs along the Fermi surface. In high temperature cuprate superconductors, particularly in the underdoped region, there is no well-defined Fermi surface formed near the antinodal region and Fermi arcs or Fermi pockets are formed due to the occurrence of the pseudogap in the normal state.

The electronic state near the antinodal region is highly incoherent in the normal state without formation of quasiparticles. Such an extreme normal state electronic structure, with neither well-defined Fermi surface nor quasiparticles, has posed a challenge in understanding its underlying origin and the emergence of superconductivity from such an unusual normal state.

Between the two extreme cases of conventional superconductors and cuprate superconductors, it is intriguing to ask whether it is possible to have a scenario that superconductivity can be realized in a system that has well-defined Fermi surface but without quasiparticles in the normal state. If there is such a case, how about its superconducting properties and superconductivity mechanism?

The iron-based superconductors show some similarities and differences when compared with cuprates, and many discussions have been focused on their non-Fermi liquid normal state. However, direct spectroscopic evidence of the non-Fermi liquid normal state behaviors is still lacking. Recently, a research group led by Prof. Xingjiang Zhou from Institute of Physics, Chinese Academy of Sciences, has shown clear electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor and established a new superconducting system where there is a well-defined Fermi surface but no quasiparticles in the normal state.

They carried out high resolution laser-based angle-resolved photoemission (ARPES) measurements on a prototypical iron-based superconductor, the optimally-doped (Ba0.6K0.4)Fe2As2. First, they found that the superconducting gap is Fermi surface dependent along two hole-like pockets around the Brillouin zone center in (Ba0.6K0.4)Fe2As2 which is consistent with ARPES results by helium lamp and synchrotron radiation light sources but in contradiction with a previous laser-based ARPES results.

This result has solved a long-standing controversy about the superconducting gap structure in this prototypical iron-based superconductor. Second, they found that, while sharp superconducting coherence peaks emerge in the superconducting state, the normal state becomes fully incoherent with no quasiparticles along a well-defined Fermi surface.

This has provided direct spectroscopic evidence that the normal state is a non-Fermi liquid. It has also established that (Ba0.6K0.4)Fe2As2 superconductor is a new system where its normal state has a well-defined Fermi surface but without well-defined quasiparticles along the Fermi surface.

Third, the superconducting gap exhibits an unusual behavior that it is nearly constant in the entire superconducting state but drops abruptly to zero at the superconducting transition temperature; this is inconsistent with the conventional BCS picture.

The spectral weight near the Fermi level is not conserved when the sample evolves from the normal state into the superconducting state. These results will provide key insights in understanding the superconductivity mechanism in iron-based superconductors, and in particular, how the coherent superconducting state can emerge out of the fully incoherent normal state in unconventional superconductors.


This work is supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300300, 2017YFA0302900), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020300, XDB25000000), the National Basic Research Program of China (Grant No. 2015CB921000), the National Natural Science Foundation of China (Grant No. 11334010), and the Youth Innovation Promotion Association of CAS (Grant No. 2017013).

See the article:

Jianwei Huang, Lin Zhao, Cong Li, Qiang Gao, Jing Liu, Yong Hu, Yu Xu, Yongqing Cai, Dingsong Wu, Ying Ding, Cheng Hu, Huaxue Zhou, Xiaoli Dong, Guodong Liu, Qingyan Wang, Shenjin Zhang, Zhimin Wang, Fengfeng Zhang, Feng Yang, Qinjun Peng, Zuyan Xu, Chuangtian Chen and Xingjiang Zhou. Emergence of Superconductivity from Fully Incoherent Normal State in an Iron-Based Superconductor (Ba0.6K0.4)Fe2As2. Sci. Bull, 2018, doi: 10.1016/j.scib.2018.11.017

Media Contact

Xingjiang Zhou

Xingjiang Zhou | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Kiel physicists discover new effect in the interaction of plasmas with solids
16.01.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Understanding insulators with conducting edges
16.01.2019 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

Latest News

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

The pace at which the world’s permafrost soils are warming

16.01.2019 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>