Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019

An international team of scientists led by researchers from the Laboratory of Nanomaterials at the Skoltech Center for Photonics and Quantum Materials (CPQM) has shown that the nonlinear optical response of carbon nanotubes can be controlled by electrochemical gating. This approach enabled designing a device for controlling the laser pulse duration. The results of the study were published in the prestigious international journal Nano Letters.

Optical phenomena that we encounter in our everyday life, such as reflection, refraction or absorption of light, do not depend on the intensity of incident light. However, at very high radiation intensities, a new class of phenomena arises, that causes changes in the refraction index, self-focusing of light or emergence of radiation at new wavelengths.


A drop of electrolyte on a transparent film of carbon nanotubes.

Credit: Skoltech

These and other phenomena that are dependent on the intensity of light are studied by a section of physics called nonlinear optics. Normally, the efficiency of nonlinear optical response is material's invariable characteristic determined by its structure.

Using nanomaterials as an optical nonlinear medium opens up new perspectives for nonlinearity control thanks to the fact that the majority of its atoms are exposed to the surface. This enables controlling a material's electronic structure and thus changing its nonlinear optical response.

Skoltech scientists in collaboration with their colleagues from the Fiber Optics Research Center of RAS, Novosibirsk State University and the University of Warwick (UK) have proposed a method for controlling the saturable absorption of carbon nanotubes using electrochemical gating. Saturable absorption is a nonlinear optical effect when the absorption coefficient decreases with increasing power of incident light.

Thus, the material gets more transparent under intense laser radiation. "We showed that magnitude of the nonlinear transparency can be controlled by placing the material in an electrochemical cell. It has been known that, if placed in the electrochemical cell, nanotubes can accumulate a considerable amount of electrical charge on their surface. What has not been known thus far is that the charge accumulation leads to a significant change in the material's nonlinear optical response and, in particular, a reduction in saturable absorption," says the first author of the study and Senior Research Scientist at Skoltech, Yuriy Gladush.

Also, the authors have looked into one of the potential practical applications of a material with a controlled nonlinear response. Saturable absorption is widely used in laser systems to generate femtosecond light pulses. All you have to do is place a saturable absorber with given parameters in the laser cavity.

"We assumed that the laser generation regime can be controlled by adjusting the material's nonlinear response. To do so, we built an electrochemical cell with carbon nanotubes placed on the optical fiber surface and integrated it into the fiber optic laser cavity. We discovered that by applying voltage to the device, one can switch from continuous laser generation regime to pulsed regime in the femtosecond and microsecond ranges.

This invention paves the way for universal laser systems with a controllable pulse duration that can be used in laser processing of materials, laser surgery, and aesthetic medicine," explains Albert Nasibulin, Head of Skoltech's Laboratory of Nanomaterials and Professor of RAS.

Media Contact

Alina Chernova
alina.chernova@skolkovotech.ru
890-556-53633

http://www.skoltech.ru 

Alina Chernova | EurekAlert!
Further information:
https://www.skoltech.ru/en/2019/10/electrochemistry-to-benefit-photonics-nanotubes-can-control-laser-pulses/
http://dx.doi.org/10.1021/acs.nanolett.9b01012

More articles from Physics and Astronomy:

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht A special elemental magic
28.05.2020 | Kyoto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Biophysicists reveal how optogenetic tool works

29.05.2020 | Life Sciences

Convenient location of a near-threshold proton-emitting resonance in 11B

29.05.2020 | Physics and Astronomy

Mapping immune cells in brain tumors

29.05.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>