Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electricity that comes from noise

12.05.2015

Computers generate heaps of surplus heat. Components that use this energy sensibly were already foreseen a few years ago. Now, physicists from the University of Würzburg have managed to create such parts in the laboratory.

The smaller and more powerful that computer chips are the more heat they produce. This causes financial problems, because cooling costs money.


A new development by Würzburg physicists can produce a rectified current from differences in temperature. This means, for example, that sensor networks can be supplied with energy.

Graphic: Fabian Hartmann

For this reason, Google is keen to build new server farms in northern latitudes, such as Finland, where the Arctic cold keeps the servers at low temperatures virtually by itself. Excessive heat generation imposes limits on progressive miniaturization, making it difficult to develop even smaller and more powerful processors.

Publication in Physical Review Letters

The fact that this energy could be used in a special way to produce electricity was foreseen theoretically by physicists from the University of Geneva a few years ago. Now, a team of physicists at the University of Würzburg have succeeded in translating this theory into practice.

Scientists at the Department of Applied Physics under Professor Lukas Worschech and Professor Sven Höfling have created a component that is capable of producing a rectified current from differences in temperature. The scientists have presented their work in the journal Physical Review Letters.

“With our component we generate energy from random movements,” says Dr. Fabian Hartmann to explain the underlying principle. In this case, this involves movements of electrons in structures that are only a few billionths of a meter in size. The greater the fluctuations in this structure, the more intense the random movements are – the physicist speaks of “noise”. “Where the heat is great we find a high level of noise. In colder areas the noise is lower,” explains Hartmann. The trick now is to produce a rectified current from this difference.

A two-dimensional electron gas

At the Gottfried-Landwehr-Laboratory for Nanotechnology at the University of Würzburg, the physicists “created” a structure referred to in the technical jargon as a “quantum dot”. This involved building an aluminum gallium arsenide heterostructure in layers on a carrier material that is only a few micrometers in size. Then onto this there they etched special structures in which electrons can move around.

However, the gap that offers the electrons room is only a few nanometers wide. This therefore creates a two-dimensional electron gas in which the directions of movement are heavily restricted. “In doing this we achieve very high electron mobility in a defined area without scattering processes,” is how Hartmann outlines the result. If you then bring two of these quantum dots of different temperatures close together, this produces the desired effect: Random movement, high-level noise on one side, generates directed movement on the other – a direct current.

Better than thermoelectric elements

It was, of course, already possible to generate energy from differences in temperature in the form of electricity. “Thermoelectric elements,” as they are called, are capable of this. The spectrum of possibilities ranges from the wristwatch, which receives its drive energy from the small difference in temperature between ambient air and body heat, to thermoelectric units, which use waste heat from a combustion process, and all the way through to the space probe Cassini, which converts the decay heat of Plutonium-238 into electrical energy.

However, the physicists believe that thermoelectric elements have a serious disadvantage: “With them, heat flow and electrical current are rectified,” explains Fabian Hartmann. This means that while they produce electricity, these materials automatically reduce the difference in temperature until the difference has disappeared. As a result, electricity can no longer flow.

“With our construction elements, on the other hand, these two processes are made independent of one another. The differences in temperature are therefore easier to maintain,” says Hartmann.

Low energy efficiency with potential

The energy efficiency of the components sounds to the layman like it is barely anything. Around 20 picowatts is the power from such an element, says the physicist. 50 billion of them generate as much as one watt. Is the development of these parts, therefore, just a gimmick in the laboratory?

Absolutely not, says Hartmann. For one thing, a common processor already has more than one billion transistors, which all produce heat. For another, it is one of the goals of his work to supply autonomous sensor networks with energy in this manner! And only a few microwatts were needed to achieve this.

Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots. F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, and L. Worschech. DOI: 10.1103/PhysRevLett.114.146805

Contact

Dr. Fabian Hartmann, Department of Applied Physics, T: +49 (0)931 31-88579, e-mail: fhartmann@physik.uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>