Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric Sparks May Alter Evolution of Lunar Soil

22.08.2014

The moon appears to be a tranquil place, but modeling done by University of New Hampshire (UNH) and NASA scientists suggests that, over the eons, periodic storms of solar energetic particles may have significantly altered the properties of the soil in the moon's coldest craters through the process of sparking—a finding that could change our understanding of the evolution of planetary surfaces in the solar system.

The study, published August 8 in the Journal of Geophysical Research-Planets, proposes that high-energy particles from uncommon, large solar storms penetrate the moon's frigid, polar regions and electrically charge the soil.


This illustration shows a permanently shadowed region of the moon undergoing subsurface sparking (the "lightning bolts"), which ejects vaporized material (the "clouds") from the surface. Subsurface sparking occurs at a depth of about one millimeter. Image not to scale.

Image Credit: Andrew Jordan/UNH

The charging may create sparking, or electrostatic breakdown, and this "breakdown weathering" process has possibly changed the very nature of the moon's polar soil, suggesting that permanently shadowed regions, which hold clues to our solar system's past, may be more active than previously thought. 

"Decoding the history recorded within these cold, dark craters requires understanding what processes affect their soil," said Andrew Jordan of the UNH Institute for the Study of Earth, Oceans, and Space and lead author of the paper.

... more about:
»Earth »Electric »Evolution »Exploration »Flight »LRO »NASA »Soil »Space »Sparks »lunar »storms

"To that end, we built a computer model to estimate how high-energy particles detected by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on board NASA's Lunar Reconnaissance Orbiter (LRO) can create significant electric fields in the top layer of lunar soil." 

The scientists also used data from the Electron, Proton, and Alpha Monitor (EPAM) on the Advanced Composition Explorer. CRaTER, which is led by scientists from UNH, and EPAM both detect high-energy particles, including solar energetic particles (SEPs). SEPs, after being created by solar storms, stream through space and bombard the moon.

These particles can buildup electric charges faster than the soil can dissipate them and may cause sparking, particularly in the polar cold of permanently shadowed regions—unique lunar sites as cold as minus 240 degrees Celsius (minus 400 degrees Fahrenheit) that may contain water ice. 

"Sparking is a process in which electrons, released from the soil grains by strong electric fields, race through the material so quickly that they vaporize little channels," said Jordan. Repeated sparking with each large solar storm could gradually grow these channels large enough to fragment the grains, disintegrating the soil into smaller particles of distinct minerals, Jordan and colleagues hypothesize. 

The next phase of this research will involve investigating whether other instruments aboard LRO could detect evidence for sparking in lunar soil, as well as improving the model to better understand the process and its consequences. 

"If breakdown weathering occurs on the moon, then it has important implications for our understanding of the evolution of planetary surfaces in the solar system, especially in extremely cold regions that are exposed to harsh radiation from space," said coauthor Timothy Stubbs of NASA's Goddard Space Flight Center in Greenbelt, Maryland. 

Coauthors from the UNH CRaTER team include Jody Wilson, Nathan Schwadron, Harlan Spence and Colin Joyce. 

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea and space-grant university, UNH is the state's flagship public institution, enrolling 12,300 undergraduate and 2,200 graduate students. 

NASA's Goddard Space Flight Center developed and manages the LRO mission. LRO's current science mission is implemented for NASA’s Science Mission Directorate. NASA's Exploration Systems Mission Directorate sponsored LRO's initial one-year exploration mission that concluded in September 2010. The research was supported in part by NASA's Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in Moffett Field, California. It was also funded by the DREAM2 SSERVI science team (Dynamic Response of the Environments at Asteroids, the Moon, and the moons of Mars). 

For more information about LRO, visit: http://www.nasa.gov/lro 

For more information about SSERVI, visit: http://sservi.nasa.gov

Story writer and UNH contact: David Sims

Institute for the Study of Earth, Oceans, and Space, University of New Hampshire

(603) 862-5369

david.sims@unh.edu

NASA contact: Bill Steigerwald

Goddard Space Flight Center, Greenbelt, Md.

301-286-5017

William.a.steigerwald@nasa.gov

Bill Steigerwald | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/electric-sparks-may-alter-evolution-of-lunar-soil/#.U_ZMrPldWSp

Further reports about: Earth Electric Evolution Exploration Flight LRO NASA Soil Space Sparks lunar storms

More articles from Physics and Astronomy:

nachricht Outback telescope captures Milky Way center, discovers remnants of dead stars
20.11.2019 | International Centre for Radio Astronomy Research

nachricht The measurements of the expansion of the universe don't add up
19.11.2019 | FECYT - Spanish Foundation for Science and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: With artificial intelligence to a better wood product

Empa scientist Mark Schubert and his team are using the many opportunities offered by machine learning for wood technology applications. Together with Swiss Wood Solutions, Schubert develops a digital wood-selection- and processing strategy that uses artificial intelligence.

Wood is a natural material that is lightweight and sustainable, with excellent physical properties, which make it an excellent choice for constructing a wide...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

With artificial intelligence to a better wood product

20.11.2019 | Materials Sciences

Strengthening regional development through old growth beech forests in Europe

20.11.2019 | Agricultural and Forestry Science

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>