Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EIT waves and coronal magnetic field diagnosis

19.11.2009
Department of Astronomy, Nanjing University in Nanjing, China – Solar coronal seismology based on magnetic field-line stretching model of "EIT waves" is proposed, which is demonstrated to be potentially able to probe the mysterious magnetic field in the solar corona.

The study, which was led by Dr. Chen, is reported in Issue 52 of Science in China (G) because of its significant research value.

Many explosive phenomena on the Sun, such as solar flares, involve the energy conversion from the magnetic energy to thermal and kinetic energies in the corona, which is the outer atmosphere of the Sun. Therefore, the coronal magnetic field is extremely crucial in the understanding of these eruptive phenomena.

However, at present, only the magnetic field along the solar surface can be measured directly, whereas the magnetic field in the solar corona can hardly be measured. Despite some efforts of measuring through infrared spectral lines and of the inversion through radio emissions, the coronal magnetic field is generally approximated by extrapolating the magnetic field from the solar surface, which is however an ill-posed problem. Therefore, it would be great to have an alternative approach to diagnose the coronal magnetic field.

In 1997, the EUV Imaging Telescope (EIT in short) on board the European–US satellite, Solar and Heliospheric Observatory (SOHO), discovered an unexpected wavelike phenomenon propagating in the solar corona, which was later named "EIT waves" after the telescope. "EIT waves" were explained successfully to be apparently propagating density enhancements compressed by the successive stretching of magnetic field lines during coronal mass ejections (CMEs), the largest-scale eruptive phenomenon on the Sun.

According to this model, the "EIT waves" propagation velocity is intimately determined by the 3-dimensional distribution of the coronal magnetic field. Based on such an interesting property, Dr. Chen proposed recently that the profile of the "EIT wave" propagation velocity can be utilized to probe the coronal magnetic field.

Dr. Chen told the reporter: "You know, we can already diagnose the deep structure of the Earth by analyzing seismic waves. Similarly, we now can diagnose the magnetic field in the solar corona by analyzing EIT waves, which in some sense can be analogized as helioseismic waves." He commented that, in this sense, "EIT wave" observations open a new window for solar physicists to look into the mysterious magnetic field in the solar corona, and would help uncover the explosive nature of many explosive phenomena, including solar flares. As also commented by a reviewer, "This is an interesting paper describing the observations and modeling of EIT waves, and illustrating how they can be applied to probe the global magnetic field in the corona".

"EIT waves" were originally explained as the magnetoacoustic waves, i.e., sound waves coupled with the magnetic field. Such a model was also used to estimate the magnetic field in the low corona. However, the magnetoacoustic wave model cannot account for various characteristics of "EIT waves". To reconcile the discrepancies, Dr. Chen and his collaborators from China, USA, and Japan put forward the magnetic field-line stretching model since 2002, which has been widely recognized in the solar physics community. In this newly published paper, Dr. Chen demonstrated that it is feasible to diagnose the magnetic field in the solar corona using the observations of "EIT wave" velocity profiles.

With the application of the "EIT wave" diagnostics, the 3-dimensional distribution of the solar coronal magnetic field is expected to be revealed, which would finally help unveil the nature of solar flares and CMEs, the two major driving sources of hazardous space disturbances to human high-tech activities, including navigations, telecommunications, manned missions, etc.

Dr. P. F. Chen is working in Department of Astronomy, Nanjing University. The department is one of the lead groups of astronomy research in China. The research was sponsored by National Natural Science Foundation of China (Nos. 10403003 and 10673004) and the Key Project of Chinese National Programs for Fundamental Research and Development (2006CB806302).

References:

1. Chen P F. EIT waves and coronal magnetic field diagnosis. Sci China G-Phys Mech Astron, 2009, 52(11): 1785-1789

http://springer.r.delivery.net/r/r?2.1.Ee.2Tp.1hW1Qv.ByxLWW..H.Ixxu.3Geu.bW89MQ%5f%5fDUSeFVZ0

2. Chen P F, Wu S T, Shibata K and Fang C. Evidence of EIT and Moreton waves in numerical simulations. Astrophys J, 2002, 572: L99-L102

http://www.iop.org/EJ/abstract/1538-4357/572/1/L99/

3 Chen P F, Fang C and Shibata K. A full view of EIT waves. Astrophys J, 2005, 622: 1202-1210

http://www.iop.org/EJ/abstract/0004-637X/622/2/1202/

P. F. Chen | EurekAlert!
Further information:
http://www.nju.edu.cn

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>