Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein-Podolsky-Rosen paradox observed in many-particle system for the first time

27.04.2018

Physicists from the University of Basel have observed the quantum mechanical Einstein-Podolsky-Rosen paradox in a system of several hundred interacting atoms for the first time. The phenomenon dates back to a famous thought experiment from 1935. It allows measurement results to be predicted precisely and could be used in new types of sensors and imaging methods for electromagnetic fields. The findings were recently published in the journal Science.

How precisely can we predict the results of measurements on a physical system? In the world of tiny particles, which is governed by the laws of quantum physics, there is a fundamental limit to the precision of such predictions. This limit is expressed by the Heisenberg uncertainty relation, which states that it is impossible to simultaneously predict, for example, the measurements of a particle’s position and momentum, or of two components of a spin, with arbitrary precision.


A cloud of atoms is held above a chip by electromagnetic fields. The EPR paradox was observed between the spatially separated regions A and B.

Illustration: University of Basel, Department of Physics

A paradoxical decrease in uncertainty

In 1935, however, Albert Einstein, Boris Podolsky, and Nathan Rosen published a famous paper in which they showed that precise predictions are theoretically possible under certain circumstances. To do so, they considered two systems, A and B, in what is known as an “entangled” state, in which their properties are strongly correlated.

In this case, the results of measurements on system A can be used to predict the results of corresponding measurements on system B with, in principle, arbitrary precision. This is possible even if systems A and B are spatially separated. The paradox is that an observer can use measurements on system A to make more precise statements about system B than an observer who has direct access to system B (but not to A).

First observation in a many-particle system

In the past, experiments have used light or individual atoms to study the EPR paradox, which takes its initials from the scientists who discovered it. Now, a team of physicists led by Professor Philipp Treutlein of the Department of Physics at the University of Basel and the Swiss Nanoscience Institute (SNI) has successfully observed the EPR paradox using a many-particle system of several hundred interacting atoms for the first time.

The experiment used lasers to cool atoms to just a few billionths of a degree above absolute zero. At these temperatures, the atoms behave entirely according to the laws of quantum mechanics and form what is known as a Bose-Einstein condensate – a state of matter that Einstein predicted in another pioneering paper in 1925. In this ultracold cloud, the atoms constantly collide with one another, causing their spins to become entangled.

The researchers then took measurements of the spin in spatially separated regions of the condensate. Thanks to high-resolution imaging, they were able to measure the spin correlations between the separate regions directly and, at the same time, to localize the atoms in precisely defined positions. With their experiment, the researchers succeeded in using measurements in a given region to predict the results for another region.

“The results of the measurements in the two regions were so strongly correlated that they allowed us to demonstrate the EPR paradox,” says PhD student Matteo Fadel, lead author of the study. “It’s fascinating to observe such a fundamental phenomenon of quantum physics in ever larger systems. At the same time, our experiments establish a link between two of Einstein’s most important works.”

On the path towards quantum technology

In addition to their basic research, the scientists are already speculating about possible applications for their discovery. For example, the correlations that are at the heart of the EPR paradox could be used to improve atomic sensors and imaging methods for electromagnetic fields. The development of quantum sensors of this kind is one objective of the National Centre of Competence in Research Quantum Science and Technology (NCCR QSIT), in which the team of researchers is actively involved.

Original source

Matteo Fadel, Tilman Zibold, Boris Décamps, and Philipp Treutlein
Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates
Science (2018), doi: 10.1126/science.aao1850

Further information

Prof. Dr. Philipp Treutlein, University of Basel, Department of Physics, phone: +41 61 207 37 66, email: philipp.treutlein@unibas.ch

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht Quantum gas turns supersolid
23.04.2019 | Universität Innsbruck

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>