Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, Efficient Transistor Could One Day Power Laptops, Cars

10.12.2009
A Cornell researcher has created an extremely efficient transistor made from a material that may soon replace silicon as king of semiconductors for power applications.

Junxia Shi, a graduate student in the laboratory of Lester Eastman, the John Given Foundation Professor of Engineering, developed the gallium nitride-based device, which could form the basis for the circuitry in products from laptops to hybrid vehicles to windmills to other power electronic systems.

The patent-pending device is a basic electrical switch made from the compound gallium nitride, a material with unique electrical properties that Eastman and colleagues have been studying for more than a decade. Research on their recent breakthrough was published in the journal Applied Physics Letters (July 28, 2009).

The new transistor’s on-resistance, or measure of resistance to electric current, is 10 to 20 times lower than today’s silicon-based power devices. It also has a high breakdown voltage, which is a measure of how much voltage can be applied across a material before it fails.

The key to the device lie in gallium nitride’s low electrical resistance, causing less power loss to heat, and its ability to handle up to 3 million volts per centimeter without electrical failure. Silicon, a competing material, can handle only about 250,000 volts per centimeter.

At the heart of improving electronics, Eastman said, is the ability to make devices that can switch electricity from high voltage to high current, which is a measurement of electrical applicability, while minimizing power loss.

“Power has to go from A to B in a machine with a high voltage transmission line to minimize power loss,” Eastman said. “Before now, there were no electronic devices that could handle both high current and the high voltage, but our device can do it.”

The transistors, which were made with Cornell nanofabrication equipment, might one day power everything from hybrid electric vehicles to Navy destroyers. In fact, the U.S. Navy first funded Cornell’s research into gallium nitride transistors more than 10 years ago and is a major funder of Eastman’s research today.

In next-generation electrical devices, “you want to have the power that’s coming out to be not much less than the power that’s going in,” Eastman said. “This is the best material we know of that can do this conversion without loss of energy.”

Shi and Eastman have a provisional patent on their device. The New Jersey-based company Velox and Motorola spinoff Freescale have also helped fund the research, with the hope of producing the devices at an industrial scale.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>