Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient and Robust: Why quantum transport can be close to optimal even in disordered molecular structures

09.08.2013
Geometric properties that enable waves to overlap and reinforce each other even in disordered molecular structures

A team led by the theoretical physicist Dr. Florian Mintert and the biophysicist Dr. Francesco Rao, junior fellows of the School of Soft Matter Research at the Freiburg Institute for Advanced Studies (FRIAS) of the University of Freiburg, is investigating the conditions and laws of quantum transport in a current study.

In light of an impending global energy crisis, the use of renewable energies like solar energy holds great promise for sustainable development. For millions of years, plants have used solar energy in the process of photosynthesis, converting lower-energy substances into high-energy substances with the help of light energy.

Quantum transport plays an important role in photosynthesis. It is based on a sensitive state that leads to constructive interference, causing waves to overlap and reinforce each other. Preconditions for this state are typically a well-controlled environment and very low temperatures. With the help of theoretical models and complex network analyses, the Freiburg scientists have now succeeded in identifying key geometric properties that enable constructive interference even in disordered media like molecular structures.

In particular, dividing the medium into active and inactive components makes the transport efficient as well as robust against thermal fluctuations, i.e., motion of the individual components. Combining these properties as a construction principle would allow scientists to produce molecular structures that achieve optimal efficiency even when control over the precise geometry is suboptimal.

The study is the result of an interdisciplinary project conducted by two junior research groups at FRIAS that merged knowledge of quantum systems and molecular processes with expertise in the analysis of complex networks. The study underlines the necessity of interdisciplinary cooperation for tackling and solving challenging scientific problems.

Original publication:
Stefano Mostarda, Federico Levi, Diego Prada-Gracia, Florian Mintert, Francesco Rao (2013). Structure–dynamics relationship in coherent transport through disordered systems. Nature Communications 4, doi:10.1038/ncomms3296.

Full text: www.nature.com/ncomms/2013/130807/ncomms3296/full/ncomms3296.html

Contact:
Dr. Florian Mintert / Dr. Francesco Rao
Phone: +49 (0)761/203-97443 / 97336
Fax: +49 (0)761/203-97451
E-Mail: florian.mintert@frias.uni-freiburg.de
francesco.rao@frias.uni-freiburg.de

Rudolf-Werner Dreier | University of Freiburg
Further information:
http://www.frias.uni-freiburg.de

Further reports about: Efficient FRIAS Robust molecular process molecular structure solar energy

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>