Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doing the nano-shimmy

10.04.2018

Imagine a single particle, only one-tenth the diameter of a bacterium, whose miniscule jiggles induce sustained vibrations in an entire mechanical device some 50 times larger. By taking clever advantage of the interplay between light, electrons on the surface of metals, and heat, researchers at the National Institute of Standards and Technology (NIST) have for the first time created a plasmomechanical oscillator (PMO), so named because it tightly couples plasmons--the collective oscillations of electrons at the surface of a metal nanoparticle--to the mechanical vibrations of the much larger device it's embedded in.

The entire system, no bigger than a red blood cell, has myriad technological applications. It offers new ways to miniaturize mechanical oscillators, improve communication systems that depend on the modulation of light, dramatically amplify extremely weak mechanical and electrical signals and create exquisitely sensitive sensors for the tiny motions of nanoparticles.


This is a schematic of the first-ever plasmomechanical oscillator (PMO), developed by NIST researchers. The orange-white ovals represent the localized plasmon oscillations. The cantilever, containing the gold cuboid nanoparticle, lies dead center. The series of white curves represents the electrical field applied to the cantilever. Data at right indicates that the device can lock onto and greatly amplify weak signals that oscillate at frequencies close to those of the PMO.

Credit: B. Roxworthy/NIST

NIST researchers Brian Roxworthy and Vladimir Aksyuk described their work in a recent issue of Optica.

The device consists of a gold nanoparticle, about 100 nanometers in diameter, embedded in a tiny cantilever--a miniature diving board--made of silicon nitride. An air gap lies sandwiched between these components and an underlying gold plate; the width of the gap is controlled by an electrostatic actuator--a thin gold film that sits atop the cantilever and bends toward the plate when a voltage is applied. The nanoparticle acts as a single plasmonic structure that has a natural, or resonant, frequency that varies with the size of the gap, just as tuning a guitar string changes the frequency at which the string reverberates.

When a light source, in this case laser light, shines on the system, it causes electrons in the resonator to oscillate, raising the temperature of the resonator. This sets the stage for a complex interchange between light, heat and mechanical vibrations in the PMO, endowing the system with several key properties.

By applying a small, direct-current voltage to the electrostatic actuator that squeezes the gap shut, Roxworthy and Aksyuk altered the optical frequency at which the resonator vibrates and the intensity of the laser light the system reflects. Such optomechanical coupling is highly desirable because it can modulate and control the flow of light on silicon chips and shape the propagation of light beams traveling in free space.

A second property relates to the heat generated by the resonator when it absorbs laser light. The heat causes the thin gold film actuator to expand. The expansion narrows the gap, decreasing the frequency at which the embedded resonator vibrates. Conversely, when the temperature decreases, the actuator contracts, widening the gap and increasing the frequency of the resonator.

Crucially, the force exerted by the actuator always kicks the cantilever in the same direction in which the cantilever is already traveling. If the incident laser light is powerful enough, these kicks cause the cantilever to undergo self-sustaining oscillations with amplitudes thousands of times larger than the oscillations of the device due to the vibration of its own atoms at room temperature.

"This is the first time that a single plasmonic resonator with dimensions smaller than visible light has been shown to produce such self-sustaining oscillations of a mechanical device," said Roxworthy.

The team also demonstrated for the first time that if the electrostatic actuator delivers a small mechanical force to the PMO that varies in time while the system undergoes these self-sustaining oscillations, the PMO can lock onto that tiny variable signal and greatly amplify it. The researchers showed that their device can amplify a faint signal from a neighboring system even when that signal's amplitude is as small as ten trillionths of a meter. That ability could translate into vast improvements in detecting small oscillating signals, Roxworthy says.

###

Paper: B.J. Roxworthy and V.A. Aksyuk, Electrically tunable plasmomechanical oscillators for localized modulation, transduction, and amplification, Optica. Published 18 January 2018. DOI: 10.1364/OPTICA.5.00007

Media Contact

Ben P. Stein
bstein@nist.gov
301-975-2763

 @usnistgov

http://www.nist.gov 

Ben P. Stein | EurekAlert!
Further information:
https://www.nist.gov/news-events/news/2018/04/doing-nano-shimmy
http://dx.doi.org/10.1364/OPTICA.5.00007

More articles from Physics and Astronomy:

nachricht Quantum physics: On the way to quantum networks
27.01.2020 | Ludwig-Maximilians-Universität München

nachricht Physicists trap light in nanoresonators for record time
23.01.2020 | ITMO University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

The synthesis of bio-based high-performance polyamide from biogenic residues: A real alternative to crude oil

27.01.2020 | Life Sciences

Superfast insights into cellular events

27.01.2020 | Life Sciences

The 'place' of emotions

27.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>