Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distant Star's Sound Waves Reveal Cycle Similar to Sun

30.08.2010
In a bid to unlock long-standing mysteries of the sun, including the impacts on Earth of its 11-year cycle, an international team of scientists has successfully probed a distant star.

By monitoring the star's sound waves, the team has observed a magnetic cycle analogous to the sun's solar cycle.

Results of the study, conducted by scientists at the U.S. National Center for Atmospheric Research (NCAR) in Boulder, Colo., and colleagues in France and Spain, are published this week in the journal Science.

The research was funded by the U.S. National Science Foundation (NSF), which is NCAR's sponsor, the CEA (the French Atomic Energy and Alternative Energies Commission), the French Stellar Physics National Research Plan, and the Spanish National Research Plan.

"This is an interesting study that was possible due to strong international cooperation," says Steve Nelson, NSF program director for NCAR.

The scientists studied a star known as HD49933, which is located 100 light years away from Earth in the constellation Monoceros, the Unicorn, just east of Orion.

The team examined the star's acoustic fluctuations, using a technique called "stellar seismology."

They detected the signature of "starspots," areas of intense magnetic activity on the surface that are similar to sunspots.

While scientists have previously observed these magnetic cycles in other stars, this was the first time they have discovered such a cycle using stellar seismology.

"Essentially, the star is ringing like a bell," says NCAR scientist Travis Metcalfe, a co-author of the paper.

"As it moves through its starspot cycle, the tone and volume of the ringing changes in a very specific pattern, moving to higher tones with lower volume at the peak of its magnetic cycle."

The technique could open the way to observing the magnetic activity of hundreds of stars, which could help evaluate new solar systems for the potential of supporting life.

Studying many stars this way could help scientists better understand how magnetic activity cycles can differ from star to star, as well as the processes behind such cycles.

The work could especially shed light on the magnetic activity processes that go on within the sun, furthering our understanding of its influence on Earth's climate.

It could also lead to better predictions of the solar cycle and resulting geomagnetic storms that can cause major disruption to power grids and communication networks.

"We've discovered a magnetic activity cycle in this star, similar to what we see with the sun," says co-author and NCAR scientist Savita Mathur. "This technique of listening to the stars will allow us to examine potentially hundreds of stars."

In addition to NCAR, the team's scientists are from France's Center for Nuclear Studies of Saclay (CEA-Saclay), Paris/Meudon Observatory (OPM), the University of Toulouse, and Spain's Institute of Astrophysics of the Canaries (IAC).

The team hopes to assess the potential for other stars in our galaxy to host planets, including some perhaps capable of sustaining life.

"Understanding the activity of stars harboring planets is necessary because magnetic conditions on the star's surface could influence the habitable zone where life could develop," says CEA-Saclay scientist Rafael Garcia, the study's lead author.

The scientists examined 187 days of data captured by the international Convection Rotation and Planetary Transits (CoRoT) space mission.

Launched on December 27, 2006, CoRoT was developed and is operated by the French National Center for Space Studies (CNES) with contributions of Austria, Belgium, Brazil, Germany, Spain, and the European Space Agency.

CoRoT is equipped with a 27-centimeter (11-inch) diameter telescope and a 4-CCD (charge-coupled device) camera sensitive to tiny variations in the light intensity from stars.

The study authors found that HD49933 is much bigger and hotter than the sun, and its magnetic cycle is much shorter.

Whereas past surveys of stars have found cycles similar to the 11-year cycle of the sun, this star has a cycle of somewhat less than a year.

This is important to scientists because it may enable them to observe an entire cycle more quickly, thereby gleaning more information about magnetic patterns than if they could only observe part of a longer cycle.

The scientists plan to expand their observations by using other stars observed by CoRoT as well as data from NASA's Kepler mission, launched in March 2009.

Kepler is seeking Earth-sized planets to survey. The mission will provide continuous data over three to five years from hundreds of stars that could potentially be hosting planets.

"If it turns out that a short magnetic cycle is common in stars, then we will potentially observe a large number of full cycles during Kepler's mission," says Metcalfe.

"The more stars and complete magnetic cycles we have to observe, the more we can place the sun into context and explore the impacts of magnetic activity on possible planets hosted by these stars."

The team has spent the past six months exploring the structure and dynamics of HD49933 and classifying its size.

They will next verify their observations using ground-based telescopes to confirm the magnetic activity of the star.

When the star reemerges from behind the sun in September, they hope to measure the full length of the cycle.

The CoRoT mission was designed to collect up to 150 days of continuous data at a time, which was not enough to determine the exact length of the star's cycle.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
David Hosansky, NCAR (303) 497-8611 hosansky@ucar.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.
View a video
(http://www.nsf.gov/news/news_videos.jsp?cntn_id=117554&media_id=68351&org=NSF) on the monitoring of the magnetic cycle of a distant star by the CoRoT satellite.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov
http://nsf.gov/news/news_summ.jsp?cntn_id=117554&org=NSF&from=news

More articles from Physics and Astronomy:

nachricht Supercomputers without waste heat
07.12.2018 | Universität Konstanz

nachricht DF-PGT, now possible through massive sequencing techniques
06.12.2018 | Universitat Autonoma de Barcelona

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>