Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissipation desired

21.07.2009
Novel concept for universal quantum computers exploits dissipative processes.

Classical computers are not powerful enough to describe even simple quantum systems. All the more it is difficult to understand complex many body systems. Quantum computers which use quantum particles instead of classical bits may help to overcome this problem.

Up to now complete isolation of the quantum system from the environment has been considered to be a precondition for the realisation of a universal quantum computer - a high challenge for experimental physics.

A new concept, developed by Prof. Ignacio Cirac, director at Max Planck Institute of Quantum Optics and head of the Theory Division, and two former members of the Theory Division, Dr. Michael Wolf (now at Nils Bohr Institute in Copenhagen), and Prof. Frank Verstraete (now at the University of Vienna) turns these ideas upside down. As the scientists report in Nature Physics (AOP 20 July 2009, DOI 10.1038/NPHYS1342), quantum systems that are coupled to the environment by dissipative processes can be used for efficient universal quantum computation as well as the preparation of exotic quantum states.

Furthermore, these systems exhibit some inherent robustness. Though still being a proof-of-principle demonstration the concept can in principle be verified with systems such as atomic gases in optical lattices or trapped ions.

Standard quantum computation is based on a system of quantum particles such as atoms or ions that serve at storing and encoding information. It exploits the unique property of these particles to take on not only states like '1' or '0' but also all kinds of superposition of these states. Manipulations acting on these qubits are always reversible, dubbed 'unitary'. Standard circuits consist of quantum gates that entangle two qubits at a time. However, this concept faces a strong adversary: once the system starts leaking information to the environment the quantum effects that give rise to the power of computing, cryptography and simulation - superposition and entanglement of states - get destroyed. Therefore the system has to be extremely well isolated from the environment.

On the contrary, the new concept of Cirac, Verstraete and Wolf makes use of these dissipative processes to perform efficient quantum computation and state engineering. In order to do so the dissipation dynamics has to be engineered such that it drives the system towards a steady state. This steady state can then represent the ground state of the system, it could be a particular exotic state, or it could encode the result of the computation. An advantage is the fact that, given the dissipative nature of the process, the system is driven towards its steady state independently of the initial state and hence of eventual perturbation along the way. That's why 'Disspative Quantum Computation' (DQC) exhibits an inherent robustness.

Though neither state preparation nor unitary dynamics are required DQC turns out to obtain a computational power that is equivalent to that of standard quantum circuits. Furthermore, this method is particularly suited for preparing interesting quantum states: for example, topological systems give rise to exotic states that play an important role in novel quantum effects like the fractional quantum Hall-effect.

Right now this concept is a proof-of-principle demonstration that dissipation provides an alternative way of carrying out quantum computations or state engineering. It aims however at being adapted in experiments with systems that use atomic gases in optical lattices or trapped ions. "This way of performing quantum computation defies most of the requirements that were thought to be necessary to build such a device", Prof. Cirac points out. "This may lead to different kinds of realizations of quantum computers that are either most robust or easy to implement. But what is more important, it gives a completely different perspective to the way a quantum computer may work in practice." [Olivia Meyer-Streng]

Original publication:
Frank Verstraete, Michael M.Wolf and J. Ignacio Cirac
Quantum computation and quantum-state engineering driven by dissipation
Nature Physics, Advance Online Publication, 20. Juli 2009, DOI 10.1038/NPHYS1342
Contact:
Prof. Dr. Ignacio Cirac
Professor of Physics, TU München
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 705 / 736
Fax: +49 - 89 / 32905 336
E-mail: ignacio.cirac@mpq.mpg.de
www.mpq.mpg.de/cirac
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de/cirac

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>