Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of a cool super-Earth


Our stellar neighbourhood expands

Astronomers from the Observatory of the University of Hamburg were involved in the discovery of a new planet. As part of an international research team led by the Institut de Ciències de l'Espai (ICE, CSIC), they have found a planet in orbit of Barnard's star.

Artistic illustration of a sunset on Barnard's star b

ESO/Martin Kornmesser

Barnard's star is a so-called red dwarf and after the Alpha-Centauri triple stellar system the second closest star to the Sun. As scientists reported in the current issue of Nature, they used astronomical observational data from about 20 years ago and combined it with new measurement data taken with the CARMENES planet-hunter spectrograph at Calar Alto/Spain among others.

The astronomers found significant evidence for a super-Earth with the size of 3.2 Earth masses, orbiting the red dwarf every 233 days. The new planet is at the so-called snowline of the star and is likely to be a frozen world.

Barnard's star is only six light-years from us and its velocity on Earth's night sky is the fastest of all stars which makes it noticeable also by hobby watchers. It is one of the least active red dwarfs known, smaller and with 7-10 billion years older than our Sun (about 4.6 billion years), and represents an ideal target to search for exoplanets.

Since 1997, several instruments gathered a large amount of measurements on the star’s subtle back and forth wobble. An analysis of the data collected up to 2015 suggested the wobble might be caused by a planet with an orbital period of about 230 days.

To confirm this theory, astronomers regularly monitored Barnard’s star using high-precision spectrometer such as the CARMENES planet-hunter spectrograph at the Calar Alto Observatory in Spain. The re-analysis of all 771 measurements detected a clear signal over a period of 233 days. This signal shows that Barnard's star is approaching and descending at about 1.2 meters per second in its shaking motion – which is about the speed of a person's gait. This was the first time that this type of exoplanet could be discovered with the so-called radial velocity method.

This discovery brought in the work of many scientists worldwide. "In Hamburg, we helped to redefine the mass of Barnard's star. Only then the measured speed of 1.2 meters per second can be used to determine the mass of the newly discovered planet," Andreas Schweitzer adds, co-author of the Hamburg Observatory of the University of Hamburg.

The newly discovered planet is called Barnard's star b (or GJ 699 b). It is a super-Earth, a large extrasolar planet with more than three times the mass of the Earth. He orbits his cool red home star near the so-called snow line – an orbit where water remains frozen. Therefore, in the absence of an atmosphere, the temperature is about -150 ° C, making the presence of liquid water on its surface unlikely.

"The discovery of a planet in our immediate neighborhood is a great motivation to continue to search for exoplanets surrounding neighboring stars and one day actually find a planet on which life would be possible," explains Andreas Schweitzer.

Original publication

I. Ribas, M. Tuomi, A. Reiners, R. P. Butler, J. C. Morales, M. Perger, S. Dreizler, C. Rodríguez-López, J. I. González Hernández, A. Rosich, F. Feng, T. Trifonov, S. S. Vogt, J. A. Caballero, A. Hatzes, E. Herrero, S. V. Jeffers, M. Lafarga, F. Murgas, R. P. Nelson, E. Rodríguez, J. B. P. Strachan, L. Tal-Or, J. Teske, B. Toledo-Padrón, M. Zechmeister, A. Quirrenbach, P. J. Amado, M. Azzaro, V. J. S. Béjar, J. R. Barnes, Z. M. Berdiñas, J. Burt, G. Coleman, M. Cortés-Contreras, J. Crane, S. G. Engle, E. F. Guinan, C. A. Haswell, Th. Henning, B. Holden, J. Jenkins, H. R. A. Jones, A. Kaminski, M. Kiraga, M. Kürster, M. H. Lee, M. J. López-González, D. Montes, J. Morin, A. Ofir, E. Pallé, R. Rebolo, S. Reffert, A. Schweitzer, W. Seifert, S. A. Shectman, D. Staab, R. A. Street, A. Suárez Mascareño, Y. Tsapras, S. X. Wang, G. Anglada-Escudé, A super-Earth planet candidate orbiting at the snow-line of Barnard’s star, Nature (2018).

The radial velocity method

Precision spectrometers measuring the Doppler effect were used for the researches. The Doppler effect is a temporal compression or elongation of a signal with changes in the distance between transmitter and receiver. In everyday life, one knows the phenomenon that an approaching car sounds different than a departing vehicle. Now, if a stellar object moves away from the earth, the observed light becomes slightly less energetic and therefore redder. The light becomes energy-rich and blue as the star moves towards the Earth.

For more information

Hamburg Observatory of the University of Hamburg:


Andreas Schweitzer
Hamburg Observatory
University of Hamburg
Phone: +49 40 42838-8416

Heiko Fuchs
University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Office of the dean
Phone: +49 40 42838-7193

Wissenschaftliche Ansprechpartner:

Andreas Schweitzer
Hamburg Observatory
University of Hamburg
Phone: +49 40 42838-8416


A super-Earth planet candidate orbiting at the snow-line of Barnard’s star, Nature (2018).

Birgit Kruse | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Initial repulsion does not rule out subsequent attraction
13.09.2019 | Universität Regensburg

nachricht NASA's Hubble finds water vapor on habitable-zone exoplanet for 1st time
12.09.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>