Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a cool super-Earth

15.11.2018

Our stellar neighbourhood expands

Astronomers from the Observatory of the University of Hamburg were involved in the discovery of a new planet. As part of an international research team led by the Institut de Ciències de l'Espai (ICE, CSIC), they have found a planet in orbit of Barnard's star.


Artistic illustration of a sunset on Barnard's star b

ESO/Martin Kornmesser

Barnard's star is a so-called red dwarf and after the Alpha-Centauri triple stellar system the second closest star to the Sun. As scientists reported in the current issue of Nature, they used astronomical observational data from about 20 years ago and combined it with new measurement data taken with the CARMENES planet-hunter spectrograph at Calar Alto/Spain among others.

The astronomers found significant evidence for a super-Earth with the size of 3.2 Earth masses, orbiting the red dwarf every 233 days. The new planet is at the so-called snowline of the star and is likely to be a frozen world.

Barnard's star is only six light-years from us and its velocity on Earth's night sky is the fastest of all stars which makes it noticeable also by hobby watchers. It is one of the least active red dwarfs known, smaller and with 7-10 billion years older than our Sun (about 4.6 billion years), and represents an ideal target to search for exoplanets.

Since 1997, several instruments gathered a large amount of measurements on the star’s subtle back and forth wobble. An analysis of the data collected up to 2015 suggested the wobble might be caused by a planet with an orbital period of about 230 days.

To confirm this theory, astronomers regularly monitored Barnard’s star using high-precision spectrometer such as the CARMENES planet-hunter spectrograph at the Calar Alto Observatory in Spain. The re-analysis of all 771 measurements detected a clear signal over a period of 233 days. This signal shows that Barnard's star is approaching and descending at about 1.2 meters per second in its shaking motion – which is about the speed of a person's gait. This was the first time that this type of exoplanet could be discovered with the so-called radial velocity method.

This discovery brought in the work of many scientists worldwide. "In Hamburg, we helped to redefine the mass of Barnard's star. Only then the measured speed of 1.2 meters per second can be used to determine the mass of the newly discovered planet," Andreas Schweitzer adds, co-author of the Hamburg Observatory of the University of Hamburg.

The newly discovered planet is called Barnard's star b (or GJ 699 b). It is a super-Earth, a large extrasolar planet with more than three times the mass of the Earth. He orbits his cool red home star near the so-called snow line – an orbit where water remains frozen. Therefore, in the absence of an atmosphere, the temperature is about -150 ° C, making the presence of liquid water on its surface unlikely.

"The discovery of a planet in our immediate neighborhood is a great motivation to continue to search for exoplanets surrounding neighboring stars and one day actually find a planet on which life would be possible," explains Andreas Schweitzer.

Original publication

I. Ribas, M. Tuomi, A. Reiners, R. P. Butler, J. C. Morales, M. Perger, S. Dreizler, C. Rodríguez-López, J. I. González Hernández, A. Rosich, F. Feng, T. Trifonov, S. S. Vogt, J. A. Caballero, A. Hatzes, E. Herrero, S. V. Jeffers, M. Lafarga, F. Murgas, R. P. Nelson, E. Rodríguez, J. B. P. Strachan, L. Tal-Or, J. Teske, B. Toledo-Padrón, M. Zechmeister, A. Quirrenbach, P. J. Amado, M. Azzaro, V. J. S. Béjar, J. R. Barnes, Z. M. Berdiñas, J. Burt, G. Coleman, M. Cortés-Contreras, J. Crane, S. G. Engle, E. F. Guinan, C. A. Haswell, Th. Henning, B. Holden, J. Jenkins, H. R. A. Jones, A. Kaminski, M. Kiraga, M. Kürster, M. H. Lee, M. J. López-González, D. Montes, J. Morin, A. Ofir, E. Pallé, R. Rebolo, S. Reffert, A. Schweitzer, W. Seifert, S. A. Shectman, D. Staab, R. A. Street, A. Suárez Mascareño, Y. Tsapras, S. X. Wang, G. Anglada-Escudé, A super-Earth planet candidate orbiting at the snow-line of Barnard’s star, Nature (2018).

https://www.nature.com/articles/s41586-018-0677-y

The radial velocity method

Precision spectrometers measuring the Doppler effect were used for the researches. The Doppler effect is a temporal compression or elongation of a signal with changes in the distance between transmitter and receiver. In everyday life, one knows the phenomenon that an approaching car sounds different than a departing vehicle. Now, if a stellar object moves away from the earth, the observed light becomes slightly less energetic and therefore redder. The light becomes energy-rich and blue as the star moves towards the Earth.

For more information

Hamburg Observatory of the University of Hamburg: https://www.hs.uni-hamburg.de

Contact:

Andreas Schweitzer
Hamburg Observatory
University of Hamburg
Phone: +49 40 42838-8416
Email: aschweitzer@hs.uni-hamburg.de

Heiko Fuchs
University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Office of the dean
Phone: +49 40 42838-7193
Email: heiko.fuchs@uni-hamburg.de

Wissenschaftliche Ansprechpartner:

Andreas Schweitzer
Hamburg Observatory
University of Hamburg
Phone: +49 40 42838-8416
Email: aschweitzer@hs.uni-hamburg.de

Originalpublikation:

A super-Earth planet candidate orbiting at the snow-line of Barnard’s star, Nature (2018).

https://www.nature.com/articles/s41586-018-0677-y

Birgit Kruse | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Weizmann physicists image electrons flowing like water
12.12.2019 | Weizmann Institute of Science

nachricht Revealing the physics of the Sun with Parker Solar Probe
12.12.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>