Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering a hidden source of solar surges

04.06.2014

Cutting-edge observations with the 1.6-meter telescope at Big Bear Solar Observatory (BBSO) in California have taken research into the structure and activity of the Sun to new levels of understanding. Operated by New Jersey Institute of Technology (NJIT), the telescope at Big Bear is the most powerful ground-based instrument dedicated to studying the Sun.

A group of astronomers led by Dr. Santiago Vargas Domínguez has analyzed the highest- resolution solar observations ever made. A summary of their work at BBSO was presented on June 2 at the 224th meeting of the American Astronomical Society, held in Boston, Massachusetts.

The NJIT researchers reported on the emergence of buoyant "small-scale" magnetic-flux ropes on the solar surface and the initiation of powerful plasma eruptions in the solar atmosphere. The observations were performed as part of a program conducted jointly with NASA's Interface Region Imaging Spectrograph (IRIS) mission, Solar Dynamics Observatory (SDO) and Hinode satellite.

These observations provided a unique view of a magnetic-flux rope in the Sun's surface-granulation pattern that was 6,000 miles long, and the interaction between newly emergent and overlying ambient magnetic fields.

Solar activity entails numerous processes occurring in the star nearest to Earth. These processes have far-reaching effects, generating "space weather" that brings bursts of charged particles and high-energy radiation in the direction of Earth at nearly the speed of light.

The magnetic field generated in the solar interior and brought to the surface creates a wide variety of structures, with sunspots being the most well-known. Sunspots can cover large areas of the surface of the Sun — up to several times the size of Earth. They can persist for weeks or even months before vanishing. Associated with the evolution of sunspots, solar flares and coronal mass ejections are especially intense during the solar maximum, the period of greatest activity in the 11-year solar cycle.

Multiple phenomena can also occur on "smaller" spatial scales of several thousand miles, and in a matter of minutes. Believed to be driven by the interaction of magnetic fields, these events occur with greater frequency and appear to be directly responsible for continuous heating of the solar atmosphere.

The combination of ground- and space-based observations has facilitated investigation of how the layers of the solar atmosphere are linked, from the surface to the outermost layer, the corona. This has yielded important new understanding of solar activity and the mechanisms that drive it. In particular, the NJIT team led by Vargas Dominguez discovered previously unknown factors responsible for the generation of plasma surges and heating of the solar atmosphere.

A series of images acquired in the course of this work recorded the evolution of the solar surface and atmosphere at 15-second intervals with a spatial resolution of approximately 40 miles per pixel. The researchers discovered that the solar surges can be triggered by buoyant magnetic-flux ropes that emerge briefly on the surface and interact with ambient magnetic fields. The 6,000-mile magnetic-flux rope observed rose up from the solar interior, stretched the granulation patterns, and traversed the surface of the Sun, which is dominated by convective motion. The pattern of convective cells seen, known as granulation, consists of granules analogous to bubbles in boiling water.

In the Sun, convection takes place in plasma at a temperature of 10,000 degrees Fahrenheit. At any given time, the Sun´s surface is covered by about four million granules. The area covered by just a few of these granules is as large as the continental United States. When a magnetic rope interacts with the granulation, it deforms the cells and they increase to some five times their original size. And as they rise, newly emergent magnetic fields hit pre-existing ambient fields. The NJIT researchers discovered that an effect of this interaction, known as reconnection, is localized heating on the order of hundreds of thousands of degrees and the production of a surge in which plasma is rapidly accelerated to a speed of 70,000 miles per hour within 10 minutes.

This research has shown that the complex action of small-scale and "hidden" fields on the Sun is important for understanding how energy is transported to the solar atmosphere. The process investigated can play a significant role in mass and energy flow from the Sun's interior to the corona, the solar wind and Earth's near-space environment.

###

Funding for this research has been provided by AFORS, NASA, NSF and NJIT.

For more information, including images and video, visit http://bbso.njit.edu.

The results of this investigation submitted to the Astrophysical Journal are available at http://arxiv.org/abs/1405.3550.

BBSO contacts:

Santiago Vargas Domínguez
svargas@bbso.njit.edu, (909) 496-9347

Alexander Kosovichev
sasha@bbso.njit.edu, (408) 239-6871

Vasyl Yurchyshyn
vayur@bbso.njit.edu

Tanya Klein | Eurek Alert!

Further reports about: BBSO Discovering NJIT Sun activity atmosphere discovered granules heating observations processes

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>