Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diffusion caused Jupiter's Red Spot Junior to colour up

22.09.2008
A study has given new insights into why Oval BA, a giant anticyclone on Jupiter also known as Red Spot Junior, suddenly turned from white to red in a period of just a few months.

Dr Santiago Pérez-Hoyos, of the Planetary Science Group of the University of the Basque Country in Spain, is presenting the findings at the European Planetary Science Congress in Münster on Monday 22nd September.

“Our group has made an in-depth analysis of all the aspects regarding the history and evolution of Oval BA. The most strongly reddened region was an annulus around its centre. However, when we calibrated images taken with the Hubble Space Telescope, we found that it didn’t actually alter in red or infrared wavelengths during the period. Instead, it became darker in blue and ultraviolet wavelengths, which made it appear visually redder,” said Dr Pérez-Hoyos.

Oval BA was formed in 2000 by the merger of smaller vortices called the White Ovals in a chain of collisions that started back in 1998. The apparent reddening was first reported by amateur astronomers in early 2006, but it was not until April that professional astronomers were able to image the impressive alteration of the second largest storm in the Solar System after the Great Red Spot (GRS).

Using data from Cassini, the Hubble Space Telescope, NASA’s New Horizons mission and computer models the Planetary Science Group analysed possible causes for the colour change, including alterations to dynamical, photochemical and diffusion processes.

Dr Pérez-Hoyos said, “The most likely cause appears to be an upward and inward diffusion of either a coloured compound or a coating vapour that may interact later with high energy solar photons at the upper levels of Oval BA.”

Comparing Oval BA with the GRS, the group found that the GRS is still redder than BA, most likely because it is higher in Jupiter’s atmosphere, thicker and contains a higher concentration of the mysterious unknown chemical agents (cromophores) that give Jupiter its browny-red colour.

The group were able to rule out that the reddening was caused by any dynamical processes. They found no change to the strength of the “hurricane” and, although some changes in the circulation around the spot had taken place, the maximum wind speeds (which may range up to 400 kilometres per hour or more) were consistent with measurements previous to 2000 of the

Oval or its white predecessors.

The group modelled the wind flow in detail using high resolution simulations, in order to understand why the red material may be confined to the annulus region and how the colour change happened in the observed time scales. The model accounts well for the temperature and wind structure inside the oval BA.

Models also showed that the change could not be attributed to interactions of Oval BA with the GRS, which were relatively close at the time. The flow around both vortices is in the zonal directions and is so strong that separates both storms.

The oval height did not change over the period and there were no large changes in the temperature gradient of the oval.

Dr Pérez-Hoyos said, “There is much to be understood about this problem yet. Future spacecraft missions and a continuous observation of the planet (as done by amateur astronomers) will surely give us new clues on the behaviour of Jupiter’s atmosphere that will result in a better understanding of it.”

IMAGES

Images can be found at:
http://www.europlanet-eu.org/demo/index.php?option=com_content&task=view&id=122&Itemid=41

FURTHER INFORMATION

Oval BA
The Oval BA is an enormous anticyclone (high-pressure system) that may be compared to a colossal hurricane in the Earth’s atmosphere. Oval BA is half the size of the Great Red Spot and is large enough to contain the Earth inside it.
EUROPEAN PLANETARY SCIENCE CONGRESS
EPSC 2008 is organised by Europlanet, the European Planetology Network in association with the European Geosciences Union and the Westfälische Wilhelms Universität, Münster.
For further details, see the meeting website:
http://meetings.copernicus.org/epsc2008/
EUROPLANET
EuroPlaNet co-ordinates activities in Planetary Sciences in order to achieve a long-term integration of this discipline in Europe.
The objectives are to:
1) increase the productivity of planetary projects with European investment, with emphasis on major planetary exploration missions;
2) initiate a long-term integration of the European planetary science community;
3) improve European scientific competitiveness, develop and spread expertise in this research area;

4) improve public understanding of planetary environments.

Europlanet Project website: http://europlanet.cesr.fr/
Europlanet Outreach website: http://www.europlanet-eu.org
Information films on Europlanet can be found at:
http://www.youtube.com/watch?v=5Bn_lhDXWSA
http://www.youtube.com/watch?v=mcEtDuGOmAQ

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org/
http://www.europlanet-eu.org/demo/index.php?option=com_content&task=view&id=122&Itemid=41

More articles from Physics and Astronomy:

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>