Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diffusion caused Jupiter's Red Spot Junior to colour up

22.09.2008
A study has given new insights into why Oval BA, a giant anticyclone on Jupiter also known as Red Spot Junior, suddenly turned from white to red in a period of just a few months.

Dr Santiago Pérez-Hoyos, of the Planetary Science Group of the University of the Basque Country in Spain, is presenting the findings at the European Planetary Science Congress in Münster on Monday 22nd September.

“Our group has made an in-depth analysis of all the aspects regarding the history and evolution of Oval BA. The most strongly reddened region was an annulus around its centre. However, when we calibrated images taken with the Hubble Space Telescope, we found that it didn’t actually alter in red or infrared wavelengths during the period. Instead, it became darker in blue and ultraviolet wavelengths, which made it appear visually redder,” said Dr Pérez-Hoyos.

Oval BA was formed in 2000 by the merger of smaller vortices called the White Ovals in a chain of collisions that started back in 1998. The apparent reddening was first reported by amateur astronomers in early 2006, but it was not until April that professional astronomers were able to image the impressive alteration of the second largest storm in the Solar System after the Great Red Spot (GRS).

Using data from Cassini, the Hubble Space Telescope, NASA’s New Horizons mission and computer models the Planetary Science Group analysed possible causes for the colour change, including alterations to dynamical, photochemical and diffusion processes.

Dr Pérez-Hoyos said, “The most likely cause appears to be an upward and inward diffusion of either a coloured compound or a coating vapour that may interact later with high energy solar photons at the upper levels of Oval BA.”

Comparing Oval BA with the GRS, the group found that the GRS is still redder than BA, most likely because it is higher in Jupiter’s atmosphere, thicker and contains a higher concentration of the mysterious unknown chemical agents (cromophores) that give Jupiter its browny-red colour.

The group were able to rule out that the reddening was caused by any dynamical processes. They found no change to the strength of the “hurricane” and, although some changes in the circulation around the spot had taken place, the maximum wind speeds (which may range up to 400 kilometres per hour or more) were consistent with measurements previous to 2000 of the

Oval or its white predecessors.

The group modelled the wind flow in detail using high resolution simulations, in order to understand why the red material may be confined to the annulus region and how the colour change happened in the observed time scales. The model accounts well for the temperature and wind structure inside the oval BA.

Models also showed that the change could not be attributed to interactions of Oval BA with the GRS, which were relatively close at the time. The flow around both vortices is in the zonal directions and is so strong that separates both storms.

The oval height did not change over the period and there were no large changes in the temperature gradient of the oval.

Dr Pérez-Hoyos said, “There is much to be understood about this problem yet. Future spacecraft missions and a continuous observation of the planet (as done by amateur astronomers) will surely give us new clues on the behaviour of Jupiter’s atmosphere that will result in a better understanding of it.”

IMAGES

Images can be found at:
http://www.europlanet-eu.org/demo/index.php?option=com_content&task=view&id=122&Itemid=41

FURTHER INFORMATION

Oval BA
The Oval BA is an enormous anticyclone (high-pressure system) that may be compared to a colossal hurricane in the Earth’s atmosphere. Oval BA is half the size of the Great Red Spot and is large enough to contain the Earth inside it.
EUROPEAN PLANETARY SCIENCE CONGRESS
EPSC 2008 is organised by Europlanet, the European Planetology Network in association with the European Geosciences Union and the Westfälische Wilhelms Universität, Münster.
For further details, see the meeting website:
http://meetings.copernicus.org/epsc2008/
EUROPLANET
EuroPlaNet co-ordinates activities in Planetary Sciences in order to achieve a long-term integration of this discipline in Europe.
The objectives are to:
1) increase the productivity of planetary projects with European investment, with emphasis on major planetary exploration missions;
2) initiate a long-term integration of the European planetary science community;
3) improve European scientific competitiveness, develop and spread expertise in this research area;

4) improve public understanding of planetary environments.

Europlanet Project website: http://europlanet.cesr.fr/
Europlanet Outreach website: http://www.europlanet-eu.org
Information films on Europlanet can be found at:
http://www.youtube.com/watch?v=5Bn_lhDXWSA
http://www.youtube.com/watch?v=mcEtDuGOmAQ

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org/
http://www.europlanet-eu.org/demo/index.php?option=com_content&task=view&id=122&Itemid=41

More articles from Physics and Astronomy:

nachricht Astronomers see 'warm' glow of Uranus's rings
21.06.2019 | University of California - Berkeley

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>