Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamond Lenses Make Laser Optics Significantly Lighter

19.06.2017

Diamonds are not only a girl's best friend, but synthetic diamonds are also attractive as a material for laser optics: thanks to their extremely high refractive index and excellent heat conduction, laser optics made with them are ten times lighter than conventional laser optics. Fiber lasers in the kW range could, thus, operate with greater flexibility. Three Fraunhofer institutes have optimized the production and processing of diamonds in recent years, and the first cutting system with diamond lenses is being tested.

Diamonds have some striking properties: for example, their refractive index is 2.4, which is extremely high and allows much thinner optics to be made. Their thermal conductivity is 2000 W/m*K and is, therefore, more than 1400 times higher than that of optical glass. Along with their high damage threshold, these properties make diamonds highly interesting for high-power optics.


Cutting experiments: the diamond lenses make it possible to reduce weight of the cutting head by more than 90% in comparison to cutting heads with conventional optics.

© Fraunhofer ILT, Aachen.


Diamond optics are characterized by significantly greater heat conductivity and a higher refractive index while also having outstanding mechanical properties.

© Fraunhofer ILT, Aachen / Volker Lannert.

To date, polycrystalline diamond substrates have only been used as windows for CO2 lasers. Due to impurities and imperfections, they absorb and scatter laser radiation at emission wavelengths about 1 μm, making them unsuitable for fiber lasers. Although single crystal diamonds do not have this problem, they are more difficult to manufacture.

The Fraunhofer Institute for Applied Solid State Physics IAF in Freiburg has been researching the production of monocrystalline diamonds for years. The CVD reactors developed at the IAF have stable plasma conditions and make substrates of up to several millimeters thick possible.

A maximum of 60 diamonds can be produced simultaneously. At build rates of up to 30 μm per hour, the reactors can produce optics with an aperture of approx. 10 mm.

90% Weight Reduction for Laser Heads with Diamond Optics

Lenses from the synthetic single crystal diamonds from Freiburg show low absorption and also low birefringence. Currently, a few specimens have been provided with antireflection coatings and incorporated into a fiber-laser cutting head.

Martin Traub from the Fraunhofer Institute for Laser Technology ILT in Aachen says, »We have optimized a complete laser optical system for the diamond lenses for the first time. Thanks to this, the cutting head is more than 90 percent lighter«.

The lenses with 7 mm diameter had previously passed tests with 2 kW laser power without problems. Now, the partners have built a system for cutting tests with a 1 kW fiber laser. Integrated in the cutting head are water cooling and the shielding gas supply. Process monitoring has not yet been planned. First tests are currently being carried out with the compact cutting head.

The new optical system should significantly increase the flexibility in laser cutting. The small size even enables the system to process areas difficult to access, and the low weight facilitates highly dynamic movements during 3D processing.

The development is a joint project of Fraunhofer Institutes for Applied Solid State Physics IAF (Freiburg), for Laser Technology ILT (Aachen) and for Production Technology IPT (Aachen). The optical system will also be presented at the LASER World of PHOTONICS 2017 in Munich. There, at the joint Fraunhofer stand A2.431, the experts will be available to answer all of your questions.

Contact Persons

Dipl.-Ing. Dipl.-Wirt.Ing Martin Traub
Group Manager of Optics Design and Diode Lasers
Telephone +49 241 8906-342
martin.traub@ilt.fraunhofer.de

Dipl.-Ing. Hans Dieter Hoffmann
Competence Area Manager of Lasers and Laser Optics
Telephone +49 241 8906-206
hansdieter.hoffmann@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Diamond IAF ILT Laser Lasertechnik fiber laser laser radiation lasers lenses optics single crystal

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>