Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamond Lenses Make Laser Optics Significantly Lighter

19.06.2017

Diamonds are not only a girl's best friend, but synthetic diamonds are also attractive as a material for laser optics: thanks to their extremely high refractive index and excellent heat conduction, laser optics made with them are ten times lighter than conventional laser optics. Fiber lasers in the kW range could, thus, operate with greater flexibility. Three Fraunhofer institutes have optimized the production and processing of diamonds in recent years, and the first cutting system with diamond lenses is being tested.

Diamonds have some striking properties: for example, their refractive index is 2.4, which is extremely high and allows much thinner optics to be made. Their thermal conductivity is 2000 W/m*K and is, therefore, more than 1400 times higher than that of optical glass. Along with their high damage threshold, these properties make diamonds highly interesting for high-power optics.


Cutting experiments: the diamond lenses make it possible to reduce weight of the cutting head by more than 90% in comparison to cutting heads with conventional optics.

© Fraunhofer ILT, Aachen.


Diamond optics are characterized by significantly greater heat conductivity and a higher refractive index while also having outstanding mechanical properties.

© Fraunhofer ILT, Aachen / Volker Lannert.

To date, polycrystalline diamond substrates have only been used as windows for CO2 lasers. Due to impurities and imperfections, they absorb and scatter laser radiation at emission wavelengths about 1 μm, making them unsuitable for fiber lasers. Although single crystal diamonds do not have this problem, they are more difficult to manufacture.

The Fraunhofer Institute for Applied Solid State Physics IAF in Freiburg has been researching the production of monocrystalline diamonds for years. The CVD reactors developed at the IAF have stable plasma conditions and make substrates of up to several millimeters thick possible.

A maximum of 60 diamonds can be produced simultaneously. At build rates of up to 30 μm per hour, the reactors can produce optics with an aperture of approx. 10 mm.

90% Weight Reduction for Laser Heads with Diamond Optics

Lenses from the synthetic single crystal diamonds from Freiburg show low absorption and also low birefringence. Currently, a few specimens have been provided with antireflection coatings and incorporated into a fiber-laser cutting head.

Martin Traub from the Fraunhofer Institute for Laser Technology ILT in Aachen says, »We have optimized a complete laser optical system for the diamond lenses for the first time. Thanks to this, the cutting head is more than 90 percent lighter«.

The lenses with 7 mm diameter had previously passed tests with 2 kW laser power without problems. Now, the partners have built a system for cutting tests with a 1 kW fiber laser. Integrated in the cutting head are water cooling and the shielding gas supply. Process monitoring has not yet been planned. First tests are currently being carried out with the compact cutting head.

The new optical system should significantly increase the flexibility in laser cutting. The small size even enables the system to process areas difficult to access, and the low weight facilitates highly dynamic movements during 3D processing.

The development is a joint project of Fraunhofer Institutes for Applied Solid State Physics IAF (Freiburg), for Laser Technology ILT (Aachen) and for Production Technology IPT (Aachen). The optical system will also be presented at the LASER World of PHOTONICS 2017 in Munich. There, at the joint Fraunhofer stand A2.431, the experts will be available to answer all of your questions.

Contact Persons

Dipl.-Ing. Dipl.-Wirt.Ing Martin Traub
Group Manager of Optics Design and Diode Lasers
Telephone +49 241 8906-342
martin.traub@ilt.fraunhofer.de

Dipl.-Ing. Hans Dieter Hoffmann
Competence Area Manager of Lasers and Laser Optics
Telephone +49 241 8906-206
hansdieter.hoffmann@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Diamond IAF ILT Laser Lasertechnik fiber laser laser radiation lasers lenses optics single crystal

More articles from Physics and Astronomy:

nachricht Newly discovered adolescent star seen undergoing 'growth spurt'
19.12.2018 | University of Exeter

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Scientists to give artificial intelligence human hearing

19.12.2018 | Information Technology

Newly discovered adolescent star seen undergoing 'growth spurt'

19.12.2018 | Physics and Astronomy

From a plant sugar to toxic hydrogen sulfide

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>