Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DGIST develops 20 times faster biosensor

24.04.2017

DGIST research team led by Professor CheolGi Kim has developed a biosensor platform which has 20 times faster detection capability than the existing biosensors using magnetic patterns resembling a spider web.

The sensing capability of a biosensor is determined by the resolution of the sensor and the movement and reaction rate of molecules. Many research groups in Korea and other countries have been improving the resolution through the development of nanomaterials but there has been a limitation to improve the sensors' sensitivity due to the low diffusion transport of biomolcules toward the sensing region.


This is a schematic of a biosensor platform resembling a spider web.

Credit: DGSIT

Professor Kim and his research team used a magnetic field in order to overcome the drawback that the movement of biomolecules such as proteins and DNA is slow when the transport only depends on diffusion.

The biomolecules labeled with superparamagnetic particles and the use of an external magnetic field enabled the movement of the biomolecules to be easily controlled and detected with an ultra-sensitive magnetic sensor.

The research team developed a new biosensor platform using a spider web-shaped micro-magnetic pattern. It improved the sensing ability of the biosensor as it increased the ability to collect low-density biomolecules by attracting biomolecules labeled with the superparamagnetic particles to the sensing area.

The first author Byeonghwa Lim at DGIST's Ph.D program of Emerging Materials Science elaborated on the biosensor platform, "We placed a spider web-shaped micro-magnetic pattern which was designed to move the superparamagnetic particles toward the center of the biosensor and a high sensitivity biosensor on the platform.

When a rotating magnetic field is applied to a spider web-shaped magnetic pattern, it can attract biomolecules labeled with superparamagnetic particles faster to the sensor. The speed of the movement is very fast and it can detect the subject 20 times faster than the diffusion method."

The research team also succeeded in monitoring the biomolecules conjugated to the superparamagnetic particles at a distance from the sensing area by utilizing the biosensor platform. In addition, the team has identified that the superparamagnetic particles not only play the role of biomolecular cargo for transportation, but also act as labels for the sensor to indicate the location of biomolecules.

Professor Kim stated "The existing biosensors require long time to detect low density biomolecules and result in poor sensing efficiency as they only depend on diffusion. The magnetic field based biosensor platform improves the collection capability of biomolecules and increases the speed and sensitivity of the biomolecules movement. Therefore, we are planning to use this platform for early diagnosis as well as recurrence diagnosis of diseases such as cancer. "

Media Contact

Dahye Kim
pwrock@dgist.ac.kr
82-537-851-163

http://www.dgist.ac.kr 

Dahye Kim | EurekAlert!

More articles from Physics and Astronomy:

nachricht Supercomputers without waste heat
07.12.2018 | Universität Konstanz

nachricht DF-PGT, now possible through massive sequencing techniques
06.12.2018 | Universitat Autonoma de Barcelona

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>