Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deuteron-like heavy dibaryons -- a step towards finding exotic nuclei

22.10.2019

Have you ever wondered how the Sun creates the energy that we get from it every day and how the other elements beside hydrogen have formed in our universe?

Perhaps you know that this is due to fusion reactions where four nuclei of hydrogen join together to produce a helium nucleus. Such nucleosynthesis processes are possible solely due to the existence, in the first place, of stable deuterons, which are made up of a proton and a neutron.


This is a schematic picture of deuteron (D_ud) and other deuteron-like stable nuclei predicted in this study.

Credit: Nilmani Mathur

Probing deeper, one finds that a deuteron consists of six light quarks. Interestingly, the strong interaction between quarks, which brings stability to deuterons, also allows for various other six-quark combinations, leading to the possible formation of many other deuteron-like nuclei. However, no such nuclei, though theoretically speculated about and searched for experimentally many times, have yet been observed.

All this may get changed with an exciting new finding, where, using a state-of-the-art first-principles calculation of lattice quantum chromodynamics (QCD), the basic theory of strong interactions, a definite prediction of the existence of other deuteron-like nuclei has been made by TIFR's physicists.

Using the computational facility of the Indian Lattice Gauge Theory Initiative (ILGTI), Prof. Nilmani Mathur and postdoctoral fellow Parikshit Junnarkar in the Department of Theoretical Physics have predicted a set of exotic nuclei, which are not to be found in the Periodic Table. The masses of these new exotic nuclei have also been calculated precisely.

These new subatomic particles could either be made of six heavy quarks (charm and bottom) or heavy and strange quarks. They are stable against strong and electromagnetic decays, but ? unlike the deuteron ? they can decay through weak interactions. Surprisingly, it is found that the stability of such nuclei increases as they become heavier.

These predictions may aid in discovering these new subatomic particles at experimental facilities. This also opens up the possibility of the existence of many other exotic nuclei, which can be formed through the fusion of heavy baryons, similar to the formation of nuclei of elements in the Periodic Table.

In such reactions, these deuteron-like nuclei could well play the same role as the deuteron in nucleosynthesis. Formation of these new subatomic particles also enhances the possibility of a quark-level analogue of nuclear fusion as discussed recently [Nature 551, 89 (2017)]. Formation of some of these states through fusion is highly exothermic, releasing energy as large as 300 MeV/reaction -- an exciting possibility for energy creation some day in the future!

Predicting new subatomic particles, particularly with more than three quarks, through first-principles calculations demands an intricate amalgamation between theory and high-performance computing.

Not only does it require a sophisticated understanding of the quantum field-theoretic issues, but the availability of large-scale computational resources is also crucial. In fact some of the largest scientific computational resources of the world are being utilized by lattice gauge theorists, like those at TIFR, who are trying to solve the mystery of strong interactions of our Universe through their investigations inside the femtoworld (within a scale of about one million-billionth of a meter).

Lattice QCD methods can also play a crucial role in understanding matter under conditions of high temperature and density similar to those in the early stages of the Universe after the Big Bang.

Media Contact

Nilmani Mathur
nilmani@theory.tifr.res.in
996-777-4658

http://www.tifr.res.in 

Nilmani Mathur | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevLett.123.162003

More articles from Physics and Astronomy:

nachricht Beyond the brim, Sombrero Galaxy's halo suggests turbulent past
21.02.2020 | NASA/Goddard Space Flight Center

nachricht 10,000 times faster calculations of many-body quantum dynamics possible
21.02.2020 | Christian-Albrechts-Universität zu Kiel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>