Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting dusty clouds and stars in our galaxy in a new way

08.01.2013
Radio wave technique uncovers shadows of clouds and stars in Milky Way's center

The center of our Milky Way galaxy is a wondrous place full of huge star clusters, dust clouds, magnetic filaments and a supermassive black hole. But it can be a confusing place, too, posing challenges to astronomers trying to image these exotic features and learn more about where they are located in the galaxy.

Northwestern University's Farhad Zadeh has discovered a new tool for detecting dusty clouds and stars: simply take a picture using radio waves. He is the first to identify what he calls radio dark clouds and stars. Stars in the early and late phases of their evolution are shrouded by huge dusty envelopes in the form of dust and gas outflows.

"When you see these dark stars or clouds in radio wavelength images, it tells you something very interesting," Zadeh said. "We immediately know there is a cold gas cloud or dusty star mixing with a hot radiative medium and that an interaction is taking place. Knowing details of these clouds is important because the clouds can produce stars and also provide material for the growth of black holes."

Zadeh is a professor of physics and astronomy in the Weinberg College of Arts and Sciences and a member of Northwestern's Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA).

Unlike in the optical, X-ray and infrared wavelengths, it is unusual to see a dark feature with radio waves. Radio is a long wavelength and therefore doesn't get absorbed easily and typically passes through whatever is in its way.

Initially Zadeh thought maybe the dark features he saw on the radio images he was studying were nothing, but then he connected the features to five known dense molecular and dusty clouds located in the center of our galaxy, some near Sagittarius A* (Sgr A*), the black hole.

"This technique provides very good sensitivity of faint dusty features, and it can produce images with even higher resolution than many other telescopes," Zadeh said. "It is an initial observation that tells you something is there that needs to be studied more closely."

In addition, astronomers can measure the size of dusty stars using this new technique.

Zadeh will present his results at 11:30 a.m. PST (Pacific Standard Time) Tuesday, Jan. 8, at the 221st meeting of the American Astronomical Society in Long Beach, Calif. He also will participate in a press conference on the galactic center at 12:45 p.m. PST the same day.

The interaction of a cold dust cloud with a hot radiation field results in a loss in the continuum emission and appears as a dark feature in the radio wavelength image, Zadeh said. The dark features that trace the embedded molecular clouds provide astronomers with the size of the cloud in three dimensions.

Although not part of the work he is presenting, Zadeh said a good example of a dusty cloud that could be imaged with his technique is G2, the tiny cloud that is fast approaching Sgr A*, our galaxy's black hole.

The cloud now is too close to the black hole for Zadeh to take an image, but he is looking at earlier data to see if he can locate G2 as a radio dark cloud.

"If the cloud was farther away from the black hole than it is now, we could detect it," Zadeh said.

For his study, Zadeh used Green Bank Telescope maps and Very Large Array images from the National Radio Astronomy Observatory. The National Science Foundation (grant AST-0807400) supported the research.

The title of Zadeh's paper, which was published Nov. 1 by the Astrophysical Journal Letters, is "Imprints of Molecular Clouds in Radio Continuum Images."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Unraveling materials' Berry curvature and Chern numbers from real-time evolution of Bloch states
18.02.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Gravitational waves will settle cosmic conundrum
15.02.2019 | Simons Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>