Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing a better superconductor with geometric frustration

12.06.2018

Superconductors contain tiny tornadoes of supercurrent, called vortex filaments, that create resistance when they move. This affects the way superconductors carry a current.

But a magnet-controlled "switch" in superconductor configuration provides unprecedented flexibility in managing the location of vortex filaments, altering the properties of the superconductor, according to a new paper in Nature Nanotechnology.


This is the system setup.

Credit: Xiaoyu Ma and Yong-Lei Wang, courtesy of the University of Notre Dame.

"We work on superconductors and how to make them better for applications," said Boldizsár Jankó professor in the Department of Physics at the University of Notre Dame and co-corresponding author on the paper. "One of the major problems in superconductor technology is that most of them have these filaments, these tiny tornadoes of supercurrent. When these move, then you have resistance."

Researchers have been trying to design new devices and new technologies to "pin," or fasten, these filaments to a specified position. Previous efforts to pin the filaments, such as irradiating or drilling holes in the superconductor, resulted in static, unchangeable arrays, or ordered arrangements of filaments.

A new, dynamic system discovered by Jankó and collaborators will enable ongoing adjustments, altering the material's properties over time. The results of the research were published June 11 in Nature Nanotechnology in a paper titled "Switchable geometric frustration in an artificial-spin-ice/superconductor hetero-system."

The collaborators' solution overlays the superconductor with an artificial spin ice consisting of an array of interacting nanoscale bar magnets. Rearranging the magnetic orientations of those nano-bar magnets results in a real-time rearrangement of the pinning on the superconducting site. This makes possible multiple, reversible spin cycle configurations for the vortices. Spin is a particle's natural, angular momentum.

"The main discovery here is our ability to reconfigure these spinning sites reversibly and instead of having just one spin cycle configuration for the vortices, we now have many, and we can switch them back and forth," Jankó said. The magnetic charges have the same pinning effect as drilled holes in other systems but are not limited to a static configuration, he described. For example, the magnets could be arranged to create more or less resistance in the superconductor. The elementary unit potentially could be combined into a circuit capable of logic manipulation.

Yong-Lei Wang, research assistant professor in the Department of Physics and co-first/co-corresponding author on the paper, who is also affiliated with Argonne National Laboratory and Nanjing University, had previously described an artificial spin structure, or magnetic charge ice, which could be tuned to various relatively stable configurations. The structures are called ice because they involve patterned atomic deformations similar to that of oxygen bonds when water freezes. In the current study, Jankó proposed applying the system to superconductors.

"We demonstrated that unconventional artificial-spin-ice geometries can mimic the charge distribution of an artificial square spin ice system, allowing unprecedented control over the charge locations via local and external magnetic fields," Wang said. "We show now that such a control over magnetic charges can be exploited in the control of quantum fluxes in a spin-ice/superconductor heterostructure." He added that the success resulted from close collaboration between experimentalists and theorists.

Because the control of the quantum fluxes is difficult to visualize in an experiment, simulations were required to successfully reproduce the results, said Xiaoyu Ma, a doctoral student in the Department of Physics who conducted the computer simulation in the study and is the co-first author on the paper. The simulations allowed researchers to see the detailed processes involved. "The number of vortex configurations that we can realize is huge, and we can design and locally reconfigure them site by site," Ma said. "This has never been realized before."

The research is expected to provide a new setting at the nanoscale for the design and manipulation of geometric order and frustration -- an important phenomenon in magnetism related to the arrangement of spins -- in a wide range of material systems, Wang noted. These include magnetic skyrmions, two-dimensional materials, topological insulators/semimetals and colloids in soft materials.

"This could lead to novel functionalities," Wang said. "We believe this work will open a new direction in application of geometrical frustrated material systems."

###

In addition to Jankó, Wang and Ma, other authors on the paper include Jing Xu, Zhi-Li Xiao, Alexy Snezhko, Ralu Divan, Leonidas E. Ocala, John E. Pearson and Wai-Kwong Kwok of Argonne National Laboratory.

This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

Media Contact

Jessica Sieff
jsieff@nd.edu
574-631-3933

 @ND_news

http://www.nd.edu 

Jessica Sieff | EurekAlert!
Further information:
https://news.nd.edu/news/designing-a-better-superconductor-with-geometric-frustration/

More articles from Physics and Astronomy:

nachricht An ultrafast glimpse of the photochemistry of the atmosphere
15.10.2019 | Ludwig-Maximilians-Universität München

nachricht Putting quantum bits into the fiber optic network: Launching the QFC-4-1QID project
15.10.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Shipment tracking for 'fat parcels' in the body

15.10.2019 | Life Sciences

An ultrafast glimpse of the photochemistry of the atmosphere

15.10.2019 | Physics and Astronomy

Unlocking the biochemical treasure chest within microbes

15.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>