Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Design for magnetoelectric device may improve your memory

07.05.2018

A switching element made of Cr2O3 may yield smaller, more energy-efficient memory for computers and flash drives.

For years, manufacturers have offered computers with increasing amounts of memory packed into smaller devices. But semiconductor companies can't reduce the size of memory components as quickly as they used to, and current designs are not energy-efficient. Conventional memory devices use transistors and rely on electric fields to store and read out information.


This image shows the (a) side and (b) overhead views of the proposed switching element show the chromia at the center, surrounded by a magnetic shunt to block magnetic fields, and the read head on top.

Credit: Ahmed and Victora

An alternative approach being heavily investigated uses magnetic fields to store information. One promising version of magnetic device relies on the magnetoelectric effect which allows an electric field to switch the magnetic properties of the devices. Existing devices, however, tend to require large magnetic and electric fields that are difficult to produce and contain.

One potential solution for this problem is a new switching element made from chromia (Cr2O3), which, one day, may be used in computer memory and flash drives. "The device has better potential for scaling, so it could be made smaller, and would use less energy once it's suitably refined," said Randall Victora, a researcher at the University of Minnesota and an author on the paper. The researchers report their findings in Applied Physics Letters, from AIP Publishing.

Computer memory is composed of switching elements, tiny devices that can switch on and off to store bits of information as ones and zeros. Previous researchers discovered that chromia's magnetoelectric properties means it can be "switched" with only an electric field, but switching requires the presence of a static magnetic field. Building on these elements, Victora and Rizvi Ahmed have created a design for a memory device with a heart of chromia that does not require any externally applied magnetic field to operate.

Their design surrounds the chromia with magnetic material. This provides an effective magnetic field through quantum mechanical coupling to Cr magnetic moments, while allowing devices to be arranged in a way that blocks stray magnetic fields from affecting nearby devices. An element to read out the state of the device, to determine if it's in one or zero state, is placed on top of the device.

This could potentially pack more memory into a smaller space because the interface between the chromia and the magnet is the key to the coupling that makes the device function. As the device shrinks, the greater surface area of the interface relative to its volume improves the operation. This property is an advantage over conventional semiconductors, where increases in surface area as size shrinks lead to greater charge leakage and heat loss.

Next, Victora and Ahmed aim to collaborate with colleagues who work with chromia to build and test the device. If successfully fabricated, then the new device could potentially replace dynamic random access memory in computers.

"DRAM is a huge market. It provides the fast memory inside the computer, but the problem is that it leaks a lot of charge, which makes it very energy-inefficient," Victora said. DRAM is also volatile, so information disappears once the power source is interrupted, like when a computer crash erases an unsaved document. This device, as described in the paper, would be nonvolatile.

However, such a memory device will likely take years to perfect. One significant barrier is the device's heat tolerance. Computers generate a lot of heat, and modeling predicts that the device would stop functioning around 30 degrees Celsius, the equivalent of a hot summer day. Optimizing the chromia, perhaps by doping it with other elements, may improve its functioning and make it more suitable to replace existing memory devices.

###

The article, "A fully electric field driven scalable magnetoelectric switching element," is authored by Rizvi Ahmed and Randall H. Victora. The article appeared in Applied Physics Letters May 1, 2018, (DOI: 10.1063/1.5023003) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5023003.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Julia Majors | EurekAlert!

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>