Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to deflect asteroids and save the Earth

20.04.2009
You may want to thank David French in advance. Because, in the event that a comet or asteroid comes hurtling toward Earth, he may be the guy responsible for saving the entire planet.

French, a doctoral candidate in aerospace engineering at North Carolina State University, has determined a way to effectively divert asteroids and other threatening objects from impacting Earth by attaching a long tether and ballast to the incoming object. By attaching the ballast, French explains, "you change the object's center of mass, effectively changing the object's orbit and allowing it to pass by the Earth, rather than impacting it."

Sound far-fetched? NASA's Near Earth Object Program has identified more than 1,000 "potentially hazardous asteroids" and they are finding more all the time. "While none of these objects is currently projected to hit Earth in the near future, slight changes in the orbits of these bodies, which could be caused by the gravitational pull of other objects, push from the solar wind, or some other effect could cause an intersection," French explains.

So French, and NC State Associate Professor of Mechanical and Aerospace Engineering Andre Mazzoleni, studied whether an asteroid-tether-ballast system could effectively alter the motion of an asteroid to ensure it missed hitting Earth. The answer? Yes.

"It's hard to imagine the scale of both the problem and the potential solutions," French says. "The Earth has been hit by objects from space many times before, so we know how bad the effects could be. For example, about 65 million years ago, a very large asteroid is thought to have hit the Earth in the southern Gulf of Mexico, wiping out the dinosaurs, and, in 1907, a very small airburst of a comet over Siberia flattened a forest over an area equal in size to New York City. The scale of our solution is similarly hard to imagine.

"Using a tether somewhere between 1,000 kilometers (roughly the distance from Raleigh to Miami) to 100,000 kilometers (you could wrap this around the Earth two and a half times) to divert an asteroid sounds extreme. But compare it to other schemes," French says, "They are all pretty far out. Other schemes include: a call for painting the asteroids in order to alter how light may influence their orbit; a plan that would guide a second asteroid into the threatening one; and of course, there are nukes. Nuclear weapons are an intriguing possibility, but have considerable political and technical obstacles. Would the rest of the world trust us to nuke an asteroid? Would we trust anyone else? And would the asteroid break into multiple asteroids, giving us more problems to solve?"

The research was first presented last month at the NC State Graduate Student Research Symposium in Raleigh, N.C. The research, "Trajectory Diversion of an Earth-Threatening Asteroid via Elastic, Massive Tether-Ballast System," has also been reviewed and accepted for presentation this September at the American Institute of Aeronautics and Astronautics SPACE 2009 Conference and Exposition in Pasadena, CA.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Physics and Astronomy:

nachricht New method gives microscope a boost in resolution
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A new 'spin' on kagome lattices
10.12.2018 | Boston College

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>