Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defects promise quantum communication through standard optical fiber

01.10.2018

An international team of scientists led by the University of Groningen's Zernike Institute for Advanced Materials has identified a way to create quantum bits that emit photons that describe their state at wavelengths close to those used by telecom providers. These qubits are based on silicon carbide in which molybdenum impurities create color centers. The results were published in the journal npj Quantum Information on 1 October.

By using phenomena like superposition and entanglement, quantum computing and quantum communication promise superior computing powers and unbreakable cryptography. Several successes in transmitting these quantum phenomena through optical fibers have been reported, but this is typically at wavelengths that are incompatible with the standard fibers currently used in worldwide data transmission.


Illustration of optical polarization of defect spin in silicon carbide

Credit: Tom Bosma, University of Groningen

Defects

Physicists from the University of Groningen in the Netherlands together with colleagues from Linköping University and semiconductor company Norstel AB, both in Sweden, have now published the construction of a qubit that transmits information on its status at a wavelength of 1,100 nanometers. Furthermore, the mechanism involved can likely be tuned to wavelengths near those used in data transmission (around 1,300 or 1,500 nanometers).

The work started with defects in silicon carbon crystals, explains PhD student Tom Bosma, first author of the paper. 'Silicon carbide is a semiconductor, and much work has been done to prevent impurities that affect the properties of the crystals. As a result, there is a huge library of impurities and their impact on the crystal.' But these impurities are exactly what Bosma and his colleagues need: they can form what are known as color centers, and these respond to light of specific wavelengths.

Superposition

When lasers are used to shine light at the right energy onto these color centers, electrons in the outer shell of the molybdenum atoms in the silicon carbide crystals are kicked to a higher energy level. When they return to the ground state, they emit their excess energy as a photon. 'For molybdenum impurities, these will be infrared photons, with wavelengths near the ones used in data communication', explains Bosma.

This material was the starting point for constructing qubits, says fellow PhD student Carmem Gilardoni, who did a lot of the theoretical work in the paper. 'We used a technique called coherent population trapping to create superposition in the color centers.' This involved using a property of electrons called spin, a quantum mechanical phenomenon that gives the electrons a magnetic moment which can point up or down. This creates a qubit in which the spin states represent 0 or 1.

Quantum internet

Gilardoni: 'If you apply a magnetic field, the spins align either parallel or anti-parallel to the magnetic field. The interesting thing is that as a result the ground state for electrons with spin up or spin down is slightly different.' When laser light is used to excite the electrons, they subsequently fall back to one of the two ground states. The team, led by Professor in Physics of Quantum Devices Caspar van der Wal, used two lasers, each tuned to move electrons from one of the ground states to the same level of excitation, to create a situation in which a superposition of both spin states evolved in the color center.

Bosma: 'After some fine tuning, we managed to produce a qubit in which we had a long-lasting superposition combined with fast switching.' Furthermore, the qubit emitted photons with information on the quantum state at infrared wavelengths. Given the large library of impurities that can create color centers in the silicon carbide crystals, the team is confident they can bring this wavelength up to the levels used in standard optical fibers. If they can manage this and produce an even more stable (and thus longer-lasting) superposition, the quantum internet will be a whole lot closer to becoming reality.

###

Reference: Tom Bosma, Gerrit J.J. Lof, Carmem M. Gilardoni, Olger V. Zwier, Freddie Hendriks, Björn Magnusson, Alexandre Ellison, Andreas Gällström, Ivan G. Ivanov, N.T. Son, Remco W.A. Havenith and Caspar H. van der Wal: Identification and tunable optical coherent control of transition-metal spins in silicon carbide. npj Quantum Information 1 October 2018

Rene Fransen | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41534-018-0097-8

More articles from Physics and Astronomy:

nachricht Deuteron-like heavy dibaryons -- a step towards finding exotic nuclei
22.10.2019 | Tata Institute of Fundamental Research

nachricht A cavity leads to a strong interaction between light and matter
22.10.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>