Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decades of research identify source of galaxy-sized stream of gas

26.03.2018

A cloud of gas 300,000 light-years long is arching around the Milky Way, shunted away from two dwarf galaxies orbiting our own. For decades, astronomers have wanted to know which of the two galaxies, the Large and Small Magellanic Clouds, is the source of the gas that has been expelled as the two galaxies gravitationally pull at one another. The answer will help astronomers understand how galaxies, including the Milky Way, form and change over time.

With colleagues at the Space Telescope Science Institute and other institutions, astronomers at the University of Wisconsin-Madison used the Hubble Space Telescope to analyze the stream of gas. By identifying the chemical makeup of the gas, known as the Leading Arm of the Magellanic Stream, the researchers identified one branch as coming from the Small Magellanic Cloud.


The Magellanic Clouds are visible among star trails above the Southern African Large Telescope in South Africa.

Credit: Jeff Miller/UW-Madison

The results show that the Large Magellanic Cloud is winning a gravitational tug of war with its smaller partner and will help refine models of the complex orbit controlling the dwarf galaxies' motion.

"We still don't know how the Milky Way has formed," says Elena D'Onghia, a professor of astronomy at UW-Madison and co-author of the new report, which was published Feb. 21 in The Astrophysical Journal. "We have this huge amount of gas sitting around the Milky Way, and we still don't know its origin. Knowing where it comes from helps us understand how galaxies form, including our Milky Way."

Visible with the naked eye from the Southern Hemisphere, the Magellanic Clouds appear as fuzzy offshoots of the Milky Way, which they orbit. In the 1970s, they were identified as the source of an enormous stream of matter -- the Magellanic Stream, which includes the Leading Arm -- that could be seen encircling the disk of the Milky Way.

After its discovery, Blair Savage, an emeritus professor of astronomy at UW-Madison, worked for decades to understand the gas complexes around the Milky Way, including the Magellanic Stream. He recruited several young researchers to tackle the problem during their training at UW-Madison.

Six of Savage's previous mentees, many of whom have since moved to other institutions, are co-authors of the new report.

"He's really the core reason that this all happened in Wisconsin," says Bart Wakker, a senior scientist in the UW-Madison astronomy department who came to Madison to study the interstellar and intergalactic medium with Savage in the 1990s.

There's been a question: Did the gas come from the Large Magellanic Cloud or the Small Magellanic Cloud? At first glance, it looks like it tracks back to the Large Magellanic Cloud," explains Andrew Fox of the Space Telescope Science Institute in Baltimore, a former graduate student of Savage's and the lead author of the study. "But we've approached that question differently, by asking: What is the Leading Arm made of? Does it have the composition of the Large Magellanic Cloud or the composition of the Small Magellanic Cloud?"

To get at the chemical composition of the Leading Arm, the researchers identified four quasars -- ultra-bright galactic centers -- that lie behind the stream of gas. With the Hubble Space Telescope, they then collected ultraviolet light from the quasars as it filtered through the Leading Arm. The team combined the ultraviolet light data with measurements of hydrogen using radio data, which showed an abundance of oxygen and sulfur characteristic of the Small, rather than the Large, Magellanic Cloud.

That similarity in chemical makeup is evidence that the Leading Arm was gravitationally ripped from the Small Magellanic Cloud, likely more than a billion years ago. Previous results appeared to show that the Leading Arm comes from the Large Magellanic Cloud, which suggests that galaxy-sized stream of gas may have complicated origins.

The researchers note that the new work leaves open questions about the fates of the dwarf galaxies and the matter they throw off.

"The whole point of this work is to understand what is happening to the Magellanic Clouds as they begin to merge with the Milky Way and how the gas from the clouds mixes with the gas from the Milky Way," says Wakker. "And we're really only in the beginning stages of understanding that process."

###

This work was supported in part by the National Aeronautics and Space Administration through grants from the Space Telescope Science Institute.

Eric Hamilton, 608-263-1986, eshamilton@wisc.edu

Media Contact

Elena D'Onghia
edonghia@astro.wisc.edu
608-263-4622

 @UWMadScience

http://www.wisc.edu 

Elena D'Onghia | EurekAlert!

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>