Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Measuring the downside of downsizing

01.08.2013
Sensitive measurements of lubricant transfer in hard disk drives will aid the design of more stable and compact components

To keep pace with the rapidly growing consumer demand for data storage, hardware engineers are striving to cram as much electronic information into as small a space as possible. Jinmin Zhao, Mingsheng Zhang and co©workers at the A*STAR Data Storage Institute, Singapore, have now devised a technique to assess the impact of making these devices more compact1. Insights resulting from this work will guide the future design of stable disk drives.

The primary components of a hard disk drive are a rotating disk coated with a thin film of magnetic material and a magnetic head on a moving arm, also called a slider (see image). The slider includes magnetic write/read elements that can encode a single bit of binary information by altering the properties of the thin film at a small spot on the surface. A smaller spot enables a higher density of data storage.

Current technology is rapidly approaching one trillion bits per square inch, but this requires the separation between the head and disk to be less than 2 nanometers. This narrow requirement, however, creates its own problems. Lubricant used on the surface of the disk to protect it from corrosion can attach to the slider, which adversely affects the reliability of the hard disk drive. ¡°We have carried out a systematic and quantitative study on how the variation of slider optical properties affects the accuracy of the measured lubricant thickness on the slider surface,¡± says Zhang.

Zhao, Zhang and their co-workers analyzed a lubricant-coated slider using a technique known as spectroscopic ellipsometry. Measuring the intensity of light reflected from a sample slider provided a highly accurate estimate of the thickness of the lubricant film. Ellipsometry is a fast and non-destructive technique that, unlike some of the alternative approaches, does not require ultra-high vacuum conditions. This technique, however, does require accurate knowledge of the optical properties of the slider. A typical slider is made of aluminum oxide and grains of titanium carbide of many different shapes and sizes; thus, its optical properties vary from position to position.

Zhao and the team¡¯s study demonstrated that the uncertainty in lubricant thickness is approximately proportional to the uncertainty in the slider¡¯s optical constants, and it becomes particularly pronounced for thicknesses below 2 nanometers.

¡°This lubricant transfer will be more serious in future heat-assisted magnetic recording,¡± explains Zhang. ¡°The next step in this research will focus on how to reduce the lubricant transfer, especially in this type of device.¡±

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

References

Zhao, J. M., Zhang, M. S., Yang, M. C. & Ji, R. Ellipsometric measurement accuracy of ultrathin lubricant thickness on magnetic head slider. Microsystem Technologies 18, 1283¨C1288 (2012). | article

Associated links
http://www.research.a-star.edu.sg/research/6711

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6711
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>