Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First data released from the Alpha Magnetic Spectrometer

04.04.2013
The first published results from the Alpha Magnetic Spectrometer (AMS), a major physics experiment operating on the International Space Station, were announced today by the AMS collaboration spokesman, Nobel Laureate Samuel Ting.

The result is the most precise measurement to date of the ratio of positrons to electrons in cosmic rays. Measurements of this key ratio may eventually provide the world with our first glimpse into dark matter.

The AMS experiment, developed under the leadership of Professor Ting, with support from the U.S. Department of Energy and fifteen other international partners, is the world's most precise detector of cosmic rays. It was constructed at universities around the world and assembled at the European Organization for Nuclear Research (CERN).

"We are very excited with this first result from AMS," said James Siegrist, DOE Associate Director of Science for High Energy Physics. "We look forward to more important results in the future."

"This result is the first step," said Professor Ting, "the beginning of a series of high precision experimental results from the Alpha Magnetic Spectrometer. This shows that a large international particle physics collaboration can work together to do particle physics in space."

The science goals of AMS include the search for dark matter, antimatter, and new physical phenomena. The detector provides high-precision measurements of cosmic ray particle fluxes, their ratios and gamma rays. From the time of its conception in 1994, U.S. support for the AMS experiment has come from DOE's Office of Science, which provided about $50 million in funding over the life of the program.

This first physics result from AMS is based on 18 months of operation, during which time AMS measured 6,800,000 cosmic ray electrons in the energy range of a half-billion to a trillion electron volts, and over 400,000 positrons (positive electrons), the largest number of energetic antimatter particles directly measured from space. The importance of this measurement is that it could eventually provide a "smoking gun" that certain dark matter particles exist and that dark matter particles and antiparticles are annihilating each other in space.

Although the data do not show a "smoking gun" at this time, this first high-precision (~1% error) measurement of the spectrum has interesting features not seen before that future data may help clarify. With additional data in the coming years, AMS has the potential to shed light on dark matter.

AMS was installed on the Space Station on May 19, 2011 after having been brought into orbit on the last flight of NASA's space shuttle Endeavour under the command of Captain Mark Kelly. Within only hours of its installation on the exterior of the Space Station, AMS became fully operational, and to date has measured over 30 billion cosmic ray events. Working in close cooperation with NASA astronauts and NASA's Johnson Space Center and Marshall Space Flight Center, AMS has maintained a flawless record of performance in the face of a hostile space environment.

Hundreds of scientists, engineers, technicians and students from all over the world have worked together for over 18 years on the AMS collaboration. The collaboration includes scientists from Europe (Finland, France, Germany, Italy, the Netherlands, Portugal, Spain, Switzerland, Romania, Russia, Turkey), Asia (China, Korea, Taiwan), and North America (Mexico and the United States).

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Press Office | EurekAlert!
Further information:
http://science.energy.gov

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>