Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder space scientists set for final spacecraft flyby of Mercury

30.09.2009
NASA's MESSENGER spacecraft, which is toting an $8.7 million University of Colorado at Boulder instrument, will make its third and final flyby of Mercury on Sept. 29 -- a clever gravity-assist maneuver that will steer it into orbit around the rocky planet beginning in March 2011.

The spacecraft will zip within 142 miles of the planet's surface at more than 100,000 miles per hour on Sept. 29, taking high-resolution color images of the surface terrain. MESSENGER also will be making ultraviolet and visible light measurements of the harsh planet's surface, its tenuous atmosphere and a comet-tailed gas cloud 25,000 thousand miles long that trails behind the planet.

MESSENGER is carrying seven instruments -- a camera, a magnetometer, an altimeter and four spectrometers -- and includes CU-Boulder's Mercury Atmospheric and Surface Composition Spectrometer, or MASCS. Despite the spacecraft's eye-popping speed, rapid rotation maneuvers during the flyby will allow the MASCS instrument to "stare" at a handful of selected targets such as surface craters as the spacecraft passes overhead, said CU-Boulder Senior Research Associate William McClintock.

"We will be pointing at each individual target from several different angles during the flyby, which will allow us to collect more data," said McClintock of CU-Boulder's Laboratory for Atmospheric and Space Physics and a MESSENGER mission co-investigator who led the development of the MASCS instrument. The MASCS team is particularly interested in unusual surface deposits spotted by the camera during Messenger's previous flybys, McClintock said.

"One of the big questions planetary scientist have is how much iron there is on Mercury's surface," said McClintock. "We hope to pinpoint the iron, determine what chemical form it is in and how it is bound up on the planet's surface." Iron, which dominates Mercury's core, is responsible for maintaining the planet's magnetic field.

The dynamic magnetic field of Mercury absorbs and stores energy from the powerful solar wind, periodically "snapping like a rubber band" and driving charged particles into the planet's surface, said McClintock. The collisions cause atoms of sodium, potassium and calcium -- and likely iron, silicon and aluminum -- to be ejected into the planet's wispy atmosphere, he said.

Some of the atoms are then accelerated by solar radiation pressure into the gigantic gas cloud tail, while other drift back down to the planet's surface, only to be lofted once again into the exosphere, where they make their way into gaseous tail, he said.

McClintock said that after the third and final flyby, the researchers will have collected about the same amount of data as they will gather during a single orbit around Mercury. Once MESSENGER settles into a yearlong pattern of twice-a-day orbits around Mercury in 2011, analyzing the massive streams of images and data "will be like drinking from a fire hose," said McClintock.

Dozens of CU-Boulder undergraduate students at LASP will become more and more involved in data analysis during the next several years as information and images pour back to Earth from MESSENGER said Mark Lankton, the LASP program manager for the MASCS instrument. The information will be streamed to LASP's Space Technology Building in the CU-Research Park.

"The hands-on space education and training opportunities offered to students at LASP in science, engineering and mission operations is available at few other places in the world," said LASP Director Daniel Baker, a co-investigator on the MESSENGER mission. "CU-Boulder undergraduates and graduate students are involved in virtually all of our space efforts, from designing and building flight instruments to controlling satellites from campus, which makes for a profound educational experience."

The 4.9 billion-mile-journey to Mercury requires MESSENGER to make more than 15 loops around the sun to guide it closer to Mercury's orbit. The craft is equipped with a large sunshade made from a heat-resistant ceramic fabric to protect it from the sun.

"During this third encounter, the MESSENGER camera will again image areas never before seen at close range, and we will obtain color images of other regions at resolutions superior to those of previous observations," said MESSENGER Principal Investigator Sean Solomon of the Carnegie Institution of Washington.

LASP also has a spectrometer riding on NASA's Cassini spacecraft that is now touring the Saturn system, a dust detector aboard the New Horizons spacecraft making its way to Pluto, and is leading a $485 million orbiting space mission slated for launch by NASA in 2013 to probe the past climate of Mars. CU-Boulder is the only research institution in the world to have designed and built space instruments for NASA that have been launched to every planet in the solar system.

William McClintock | EurekAlert!
Further information:
http://www.colorado.edu
http://messenger.jhuapl.edu/
http://lasp.colorado.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>