Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder scientists detect magnesium in MESSENGER flyby of Mercury

04.05.2009
NASA's MESSENGER spacecraft served up another curveball to a University of Colorado at Boulder team after a second flyby of the hot inner planet Oct. 6 detected magnesium -- an element created inside exploding stars and which is found in many medicine cabinets on Earth -- clumped in the tenuous atmosphere of the planet.

Scientists had suspected magnesium would be present, but were surprised at its distribution and abundance, said Senior Research Associate William McClintock of CU-Boulder's Laboratory for Atmospheric and Space Physics.

The discovery in the planet's wispy atmosphere, known as its exosphere, is one more clue to the mystery of the creation of the rocky, bizarre planet that resides closest to the sun.

"Detecting magnesium was not too surprising, but seeing it in the amounts and distribution we recorded was unexpected," said McClintock, a MESSENGER co- investigator who led the development of CU-Boulder's Mercury Atmospheric and Surface Composition Spectrometer, or MASCS. "This is an example of the kind of individual discoveries that the MESSENGER team will piece together to give us a new picture of how the planet formed and evolved."

A paper on the subject by McClintock is being published in the May 1 issue of Science. Co-authors on the paper are Ronald Vervack and Noam Izenberg of Johns Hopkins University, E. Todd Bradley of the University of Central Florida, Rosemary Killen, Nelly Mouand and Mathew Burger of the University of Maryland, Ann Sprague of the University of Arizona and Sean Solomon of the Carnegie Institution of Washington, D.C. Solomon is the MESSENGER principal investigator.

The CU-Boulder instrument also measured other elements in the exosphere during the Oct. 6 flyby, including calcium and sodium. "Since calcium and magnesium are chemically similar, we might expect them to have a similar distribution in Mercury's exosphere," McClintock said. "But they don't, and we don't yet understand why."

McClintock said materials escaping from Mercury's surface are accelerated by solar radiation pressure to form a gigantic tail of atoms flowing away from the sun. Their abundances change, however, depending on the season as well as changes in magnetic field orientation and solar wind intensity.

The LASP team suspects that other metallic elements from the surface -- including aluminum, iron and silicon -- also are present in the exosphere. The metals permeated the solar nebula when it was coalescing some 4.5 billion years ago, shaping the planets, said McClintock.

Traveling at 4.2 miles per second, the spacecraft dipped within 124 miles of Mercury Oct. 6 and imaged about 30 percent of the surface never before seen by spacecraft. Launched in August 2004, MESSENGER will make the last of three Mercury passes in September 2009 before finally settling into orbit in 2011. The circuitous, 4.9 billion-mile-journey to Mercury requires more than six years and 15 loops around the sun to guide it closer to Mercury's orbit.

The desk-sized MESSENGER spacecraft is carrying seven instruments -- a camera, a magnetometer, an altimeter and four spectrometers. McClintock led the development of MASCS, which was miniaturized to weigh less than seven pounds for the arduous journey. Data from MASCS obtained during the first flyby in January 2008 provided LASP researchers with evidence that about 10 percent of the sodium atoms ejected from Mercury's hot surface during the daytime were accelerated into a 25,000-mile-long sodium tail trailing the planet, according to McClintock.

MESSENGER took data and images from Mercury for about 90 minutes on Oct. 6, when LASP turned on a detector in MASCS for its first look at Mercury's surface in the far ultraviolet portion of the light spectrum, said McClintock.

LASP Director Daniel Baker, also a co-investigator on the MESSENGER mission, is using data from the mission to study Mercury's magnetic field and its interaction with the solar wind. Mark Lankton is the LASP program manager for the MASCS instrument. Dozens of undergraduates and graduate students will be involved in analyzing data over the next several years as information and images pour back to Earth from MESSENGER.

William McClintock | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>