Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder scientists detect magnesium in MESSENGER flyby of Mercury

04.05.2009
NASA's MESSENGER spacecraft served up another curveball to a University of Colorado at Boulder team after a second flyby of the hot inner planet Oct. 6 detected magnesium -- an element created inside exploding stars and which is found in many medicine cabinets on Earth -- clumped in the tenuous atmosphere of the planet.

Scientists had suspected magnesium would be present, but were surprised at its distribution and abundance, said Senior Research Associate William McClintock of CU-Boulder's Laboratory for Atmospheric and Space Physics.

The discovery in the planet's wispy atmosphere, known as its exosphere, is one more clue to the mystery of the creation of the rocky, bizarre planet that resides closest to the sun.

"Detecting magnesium was not too surprising, but seeing it in the amounts and distribution we recorded was unexpected," said McClintock, a MESSENGER co- investigator who led the development of CU-Boulder's Mercury Atmospheric and Surface Composition Spectrometer, or MASCS. "This is an example of the kind of individual discoveries that the MESSENGER team will piece together to give us a new picture of how the planet formed and evolved."

A paper on the subject by McClintock is being published in the May 1 issue of Science. Co-authors on the paper are Ronald Vervack and Noam Izenberg of Johns Hopkins University, E. Todd Bradley of the University of Central Florida, Rosemary Killen, Nelly Mouand and Mathew Burger of the University of Maryland, Ann Sprague of the University of Arizona and Sean Solomon of the Carnegie Institution of Washington, D.C. Solomon is the MESSENGER principal investigator.

The CU-Boulder instrument also measured other elements in the exosphere during the Oct. 6 flyby, including calcium and sodium. "Since calcium and magnesium are chemically similar, we might expect them to have a similar distribution in Mercury's exosphere," McClintock said. "But they don't, and we don't yet understand why."

McClintock said materials escaping from Mercury's surface are accelerated by solar radiation pressure to form a gigantic tail of atoms flowing away from the sun. Their abundances change, however, depending on the season as well as changes in magnetic field orientation and solar wind intensity.

The LASP team suspects that other metallic elements from the surface -- including aluminum, iron and silicon -- also are present in the exosphere. The metals permeated the solar nebula when it was coalescing some 4.5 billion years ago, shaping the planets, said McClintock.

Traveling at 4.2 miles per second, the spacecraft dipped within 124 miles of Mercury Oct. 6 and imaged about 30 percent of the surface never before seen by spacecraft. Launched in August 2004, MESSENGER will make the last of three Mercury passes in September 2009 before finally settling into orbit in 2011. The circuitous, 4.9 billion-mile-journey to Mercury requires more than six years and 15 loops around the sun to guide it closer to Mercury's orbit.

The desk-sized MESSENGER spacecraft is carrying seven instruments -- a camera, a magnetometer, an altimeter and four spectrometers. McClintock led the development of MASCS, which was miniaturized to weigh less than seven pounds for the arduous journey. Data from MASCS obtained during the first flyby in January 2008 provided LASP researchers with evidence that about 10 percent of the sodium atoms ejected from Mercury's hot surface during the daytime were accelerated into a 25,000-mile-long sodium tail trailing the planet, according to McClintock.

MESSENGER took data and images from Mercury for about 90 minutes on Oct. 6, when LASP turned on a detector in MASCS for its first look at Mercury's surface in the far ultraviolet portion of the light spectrum, said McClintock.

LASP Director Daniel Baker, also a co-investigator on the MESSENGER mission, is using data from the mission to study Mercury's magnetic field and its interaction with the solar wind. Mark Lankton is the LASP program manager for the MASCS instrument. Dozens of undergraduates and graduate students will be involved in analyzing data over the next several years as information and images pour back to Earth from MESSENGER.

William McClintock | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>