Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crossing scientific boundaries to understand the rejection of drugs

01.12.2008
A physicist from The University of Nottingham and a mathematical modeller from The University of Southampton are joining forces in the hope of answering a biological mystery — how do our bodies reject some of the drugs that are sent to cure us?

The £92,300 study is funded by the Medical Research Council through its ‘Discipline Hopping’ Awards scheme which aims to provoke new collaborations between the physical and life sciences.

For the next 12 months Dr Cyril Rauch, physicist and lecturer in the School of Veterinary Medicine and Science at Nottingham will be working with Dr Giles Richardson, from the School of Mathematical Sciences in Southampton to find out why and how the molecules that oppose drug entry into cells work.

Dr Rauch said: “I am a physicist who is very interested in complex systems such as biology. We will be working at the interface of science — mathematics, physics and biology. Drugs have got to have a molecule in the body to target. But a drug has to cross all the body tissues prior to reaching its target and this is incredibly tricky and very difficult from the drug standpoint. In particular, cells have specific proteins, namely membrane transporters, that impair the transverse movement of drugs by constantly extruding them — these are their natural defence mechanism to avoid toxicity. We have previously suggested and reported that the membrane of cells is central and that basic physics may shed light on this very complex transport of drugs to their target. In due course we aim to control drugs’ oral bioavailability and multi drug resistance.”

Dr Richardson, whose mathematical expertise is in modelling biological and electrochemical phenomena said: “When I first heard about it I was intrigued by multidrug resistance and, in particular, by the fact that, despite there being a number of well attested properties displayed by multidrug resistant cells, there is still no consensus on the mechanisms for this strange phenomenon. Furthermore I felt that the modelling techniques that I use could play an important role in testing out hypothetical mechanisms”.

Multidrug resistance is a major problem in the treatment of a variety of diseases including malaria, cancer and certain bacterial infections.

Transporters on the cell’s protective shield — its biomembrane — repel the drugs and are part of the mechanism that decides which particles are friend or foe. These cells will fight against drugs by putting in place drug entry systems. What Dr Rauch and Dr Richardson want to know is how and why a drug should come into contact with a transporter and be expelled and what leads to that rejection.

Research has already given us some clues as to why this happens but more work needs to be done. Together these two scientists, from very different academic backgrounds, will build on the work that has already been carried out. They want to model theoretically, using physics and mathematics, the process of drug resistance and compare these results with other experimental data.

They want to try and discover what holds the drug long enough in the membrane, which is just five nanometres thick, for it to defuse to the transporter. If they can impair diffusion of the drug to the transporter they should be able to help the drug pass safely through the membrane to the nucleus. The two scientists believe that rational mathematical modelling has an important role in explaining this phenomenon and will eventually lead to the development of new treatment regimes.

Understanding the physical biology of therapeutics crossing cells may well lead to the generation of new therapeutic strategies that will also target cellular compounds that drive and put in place the physical biology of cells.

Lindsay Brooke | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Understanding-the-rejection-of-drugs.html

More articles from Physics and Astronomy:

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

nachricht UNLV study unlocks clues to how planets form
13.12.2018 | University of Nevada, Las Vegas

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

Collagen nanofibrils in mammalian tissues get stronger with exercise

14.12.2018 | Health and Medicine

Protein involved in nematode stress response identified

14.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>