Crab Pulsar Emits Light at Higher Energies Than Expected

Pulsars–highly magnetized, rotating stars–were first discovered more than 40 years ago, and are now believed to be a type of stellar leftover, or remnant–in this case, a neutron star–that results from the explosion and gravitational collapse of a more massive star.

In the October 7 issue of Science, astrophysicists with VERITAS report an unexpected finding in the Crab Pulsar, which is the central star in the Crab Nebula in the constellation of Taurus. They detected pulsed gamma rays, or light energy, above one hundred thousand million electron volts. The detection cannot be explained with current pulsar models that show pulsed gamma rays in the range of a few hundred million electron volts to a few thousand million electron volts. The finding is causing researchers to consider new theories about gamma-ray production. More on the discovery can be found in press releases by the Harvard-Smithsonian Center for Astrophysics, University of California, Los Angeles, University of California, Santa Cruz and others. The paper, online in Science today, had 95 coauthors, including scientists from 26 institutions in five countries, who are part of the VERITAS collaboration.

Left is an artist's conception of the VERITAS array of imaging atmospheric Cherenkov telescopes (IACTs) observing the Crab Nebula. IACTs detect high-energy gamma-rays. Also seen is a very high energy gamma-ray originating from the Crab Nebula producing an airshower in the high atmopshere. The telescopes observe the Cherenkov radiation produced by the energetic electrons in the airshower. Right is an artist's conception of the pulsar at the center of the Crab Nebula, with a Hubble Space Telescope photo of the nebula in the background.

VERITAS, or Very Energetic Radiation Imaging Telescope Array System, is a ground-based observatory for gamma-ray astronomy located at the Fred Lawrence Whipple Observatory in southern Arizona. It is operated by a collaboration of more than 100 scientists from 22 different institutions in the United States, Ireland, England and Canada. VERITAS is funded by the U.S. National Science Foundation, U.S. Department of Energy Office of Science, Smithsonian Institution, Natural Sciences and Engineering Research Council of Canada, Science Foundation Ireland, and Science and Technology Facilities Council of the United Kingdom.

Media Contacts
Bobbie Mixon, NSF (703) 292-8070 bmixon@nsf.gov
Lisa Van Pay, NSF (703) 292-8796 lvanpay@nsf.gov
Program Contacts
James Whitmore, NSF (703) 292-8908 jwhitmor@nsf.gov
Co-Investigators
Rene Ong, University of California, Los Angeles (310) 825-3622 rene@astro.ucla.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Media Contact

Bobbie Mixon EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors