Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could vacuum physics be revealed by laser-driven microbubble?

10.07.2019

A "vacuum" is generally thought to be nothing but empty space. But in fact, a vacuum is filled with "virtual particle-antiparticle pairs" of electrons and positrons that are continuously created and annihilated in unimaginably short time-scales.

The quest for a better understanding of vacuum physics will lead to the elucidation of fundamental questions in modern physics, which is integral in unravelling the mysteries of space exploration such as the Big Bang.


Envisioned picture showing all of the main events of microbubble implosion, i.e., laser illumination, hot electron spread, implosion, and proton flash at the end.

Credit: M. Murakami


Comparison of the electrostatic fields between the 3D simulation and the model. The inset shows the proton distribution around the center (color-coded in accordance with the distance from the center).

Credit: M. Murakami

However, to forcibly separate the virtual pairs using a laser's electric field and cause them to appear not as virtual particles but real particles, the laser intensity required would be ten million times higher than what today's laser technology is capable of.

This field intensity is the so-called "Schwinger limit", named a half century ago after the American Nobel laureate, Julian Schwinger.

Scientists at Osaka University discovered a novel mechanism which they refer to as microbubble implosion (MBI) in 2018. In MBI, super-high energy hydrogen ions (relativistic protons) are emitted at the moment when bubbles shrink to atomic size through the irradiation of hydrides with micron-sized spherical bubbles by ultraintense, ultrashort laser pulses.

In this study, the group led by Masakatsu Murakami confirmed that during MBI, an ultrahigh electrostatic field close to the Schwinger field could be achieved because micron-sized bubbles embedded in a solid hydride target implode to have nanometer-sized diameters upon ionization.

From the 3D simulations carried out at the Osaka University Institute of Laser Engineering, they also found that the density during the maximum compression of the bubble reaches several hundred thousand to one million times solid density.

At this density, something no larger than a lump sugar would weigh a few hundred kilograms. The energy density at the bubble center was found to be about one million times higher than that at the sun. These astonishing numbers have been thought to be impossible to achieve on Earth. Their research results were published in Physics of Plasmas.

###

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Saori Obayashi | EurekAlert!
Further information:
http://dx.doi.org/10.1063/1.5093043

More articles from Physics and Astronomy:

nachricht Interstellar iron isn't missing, it's just hiding in plain sight
10.07.2019 | Arizona State University

nachricht Puzzling on a quantum chessboard
10.07.2019 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

Im Focus: Experimental physicists redefine ultrafast, coherent magnetism

For the first time ever, experimental physicists have been able to influence the magnetic moment of materials in sync with their electronic properties. The coupled optical and magnetic excitation within one femtosecond corresponds to an acceleration by a factor of 200 and is the fastest magnetic phenomenon that has ever been observed.

Electronic properties of materials can be directly influenced via light absorption in under a femtosecond (10-15 seconds), which is regarded as the limit of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Could vacuum physics be revealed by laser-driven microbubble?

10.07.2019 | Physics and Astronomy

Interstellar iron isn't missing, it's just hiding in plain sight

10.07.2019 | Physics and Astronomy

Coral reefs shifting away from equator

10.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>