Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018

Osaka University scientists discover new particle acceleration by micro-bubbles

Laser pulse compression technology invented in the late 1980s developed high-power short-pulse laser techniques, enhancing laser intensity 10-million-fold in a quarter of a century.


This is a schematic view of a bubble implosion, which is an envisioned picture showing the whole main events integrated, i.e., laser illumination, hot electron spread, implosion, and proton flash.

Credit: M. Murakami

Scientists at Osaka University discovered a novel particle acceleration mechanism called 'Micro-bubble implosion,' in which super-high energy hydrogen ions (relativistic protons) are emitted at the moment when bubbles shrink to atomic size through the irradiation of hydrides with micron-sized spherical bubbles by ultraintense laser pulses. Their research results were published in Scientific Reports.

The group led by Masakatsu Murakami has reported an astonishing physical phenomenon: when shrinking matter to the unprecedented high level, with density comparable to matter the size of a sugar cube weighing more than 100 kg, high-energy protons are emitted from the positively-charged nanoscale clusters, a world first. Usually, an acceleration distance of several tens to hundreds of meters is necessary for conventional accelerators to generate such huge energy.

In micro-bubble implosion, a unique ion motion in which ions (charged particles) converge to a single point in space at half the speed of light plays a crucial role. This phenomenon, which looks like the opposite of the Big Bang, is essentially different from any previously discovered or proposed acceleration principles.

This new concept will clarify unknown space physics of grand scales of time and space, such as the origins of high-energy protons moving about in stars and space. In addition, as a compact source of neutron radiation through nuclear fusion, this concept will be utilized in a variety of applications in medical treatment and industry in the future, such as proton radiotherapy to treat cancer, the development of new energy with laser nuclear fusion, cross-sectional photos for developing fuel cells, and development of new substances.

###

The original source link will be available from 10 am JST on May 25, 2018. http://resou.osaka-u.ac.jp/en/research/2018/20180515_1

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum. Website: http://resou.osaka-u.ac.jp/en/top

Media Contact

Masakatsu Murakami
murakami-m@ile.osaka-u.ac.jp
81-668-798-743

 @osaka_univ_e

http://www.osaka-u.ac.jp/en 

Masakatsu Murakami | idw - Informationsdienst Wissenschaft
Further information:
http://resou.osaka-u.ac.jp/en/research/2018/20180515_1
http://dx.doi.org/10.1038/s41598-018-25594-3

More articles from Physics and Astronomy:

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

nachricht Physicists edge closer to controlling chemical reactions
11.12.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>