Seeing the Cosmos Through "Warm" Infrared Eyes

New images taken with two of Spitzer's infrared detector channels — the two that work at the new warmer temperature — demonstrate that the observatory remains a powerful tool for probing the dusty universe. The images show a bustling star-forming region, the pretty remains of a star like the sun, and a swirling galaxy lined with stars.

“Spitzer continues to provide us with a unique view of stars, galaxies and planets,” said Spitzer Project Scientist Michael Werner, NASA's Jet Propulsion Laboratory, Pasadena, Calif.

“We're thrilled to see Spitzer up and running again, and continuing to provide such spectacular images,” added astronomer Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics. “This new lease on life is a testament to a well-designed spacecraft.”

The first of three images shows a cloud bursting with stars in the Cygnus region of our Milky Way galaxy. Spitzer's infrared eyes both peer through and see dust, revealing young stars tucked in dusty nests. A second image shows a nearby dying star — a planetary nebula called NGC 4361 — whose outer layers expand outward in the rare form of four jets. And a final picture is of a classic spiral beauty, a galaxy called NGC 4145 located 68 million light-years from Earth.

“With Spitzer's remaining shorter-wavelength bands, we can continue to see through the dust in galaxies and get a better look at the overall populations of stars,” said Robert Hurt imaging specialist for Spitzer at NASA's Spitzer Science Center, California Institute of Technology. “All stars are equal in the infrared.”

Since its launch from Cape Canaveral, Fla., on August 25, 2003, Spitzer has made countless discoveries: planet-forming disks around stars, the composition of the material making up comets, hidden black holes, galaxies billions of light-years away and more.

Perhaps the most revolutionary and surprising Spitzer finds involve planets around other stars, called exoplanets. In 2005, Spitzer detected the first actual photons of light from an exoplanet. In a clever technique, now referred to as the secondary-eclipse method, Spitzer was able to collect the light of a hot, gaseous exoplanet and learn about its temperature. Further detailed studies later revealed more about the composition and structure of the atmospheres of these exotic worlds.

Warm Spitzer will address many of the same science questions as before, while tackling new projects, such as: refining estimates of Hubble's constant, or the rate at which our universe is stretching apart; searching for galaxies at the edge of the universe; characterizing more than 700 near-Earth objects, or asteroids and comets with orbits that pass close to our planet; and studying the atmospheres of gas-giant planets expected to be discovered soon by NASA's Kepler mission. As was true during the cold Spitzer mission, these and the other programs are selected via a competition in which scientists from around the world are invited to participate.

Spitzer officially began its warm science mission on July 27, 2009. The new pictures were taken while the telescope was being re-commissioned, on July 18 (NGC 4145, NGC 4361) and July 21 (Cygnus).

For more information about Spitzer, visit http://www.spitzer.caltech.edu/spitzer and http://www.nasa.gov/spitzer.

This release is being issued jointly with NASA.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology, also in Pasadena. Caltech manages JPL for NASA. Spitzer's infrared array camera was built by NASA's Goddard Space Flight Center, Greenbelt, Md. The instrument's principal investigator is Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu
Whitney Clavin
Jet Propulsion Laboratory
818-354-4673
whitney.clavin@jpl.nasa.gov

Media Contact

Christine Pulliam EurekAlert!

More Information:

http://www.cfa.harvard.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors