Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic dust reveals new insights on the formation of solar system

30.04.2019

'One of the greatest curiosities is how the universe was formed and how life started. And this weirdo particle showed us something we didn't know before.'

The study of a tiny grain of stardust -- older than our solar system -- is shining new light on how planetary systems are formed.


A team of researchers found a grain of stardust (inset image) that survived the formation of our solar system and analyzed it with instruments sensitive enough to identify single atoms. Measuring one 25,000th of an inch, the carbon-rich graphite grain (red) revealed an embedded speck of oxygen-rich material (blue), two types of stardust that were thought could not form in the same nova eruption.

Illustration: University of Arizona/Heather Roper

The microbe-sized extraterrestrial particle, which originated from a nova explosion more than 4.5 billion years ago, was discovered inside a meteorite collected in Antarctica by the National Aeronautics and Space Administration (NASA).

Alongside planetary scientists at the University of Arizona (UA), the grain was studied last year at the atomic-level by University of Toronto Engineering professor Jane Howe while she was a senior scientist at Hitachi High Technologies.

"This grain is presolar. It originated before the formation of the sun. It's just amazing to analyze such an anomaly," says Howe.

Using advanced ion and electron microscopes, Howe and the researchers observed the arrangement of carbon atoms and its variants, known as carbon isotope anomalies, and discovered the presolar graphite grain contained oxygen-rich silicates -- something they did not expect to see.

The researchers' observation gives new insights into the conditions of a dying star. It also contradicts the scientific hypothesis that the two types of stardust material, oxygen- and carbon-rich -- which are presolar building blocks in the formation of a solar system -- could not form in the same nova outburst, under the same conditions.

The international collaboration, which includes Howe, planetary scientists, astronomers and material scientists at UA, Washington University in St. Louis, Polytechnic University of Catalonia in Spain, and Hitachi High Technologies in the U.S. and Japan, published their findings today in Nature Astronomy.

"Sometimes research is about satisfying your curiosity. One of the greatest curiosities is how the universe was formed and how life started," says Howe. "And this weirdo particle showed us something we didn't know before."

Howe, who joined U of T Engineering in January 2019, is currently using her electron microscopy expertise to study materials to advance renewable energy, and also plans to expand her work to include meteoritic materials science research.

"I thought this research project was really exciting, and I'm a curious person by nature. At the time, it was just part of my job assignment, but now it's starting to become part of my research portfolio," says Howe.

Howe hopes to further her collaboration with researchers at UA. In addition, she recently began a collaboration with U of T Professor Kim Tait at the Department of Earth Sciences, who is also the senior curator of mineralogy at the Royal Ontario Museum to study its collection of meteorites.

And, in September 2023 when the UA-led NASA OSIRIS-Rex mission returns to Earth after taking samples of carbon-rich asteroid, Bennu, Howe will be among the team of Canadian researchers to analyze its samples.

"This kind of research, it's part of a much larger debate of how life started on Earth. We all care about who we are and where we came from," says Howe. "I'm so excited to be part of advancing our knowledge in this."

Liz Do | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41550-019-0757-4

More articles from Physics and Astronomy:

nachricht A torque on conventional magnetic wisdom
23.07.2019 | University of Illinois College of Engineering

nachricht MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses
22.07.2019 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>