Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic curiosity reveals ghostly glow of dead quasar

04.11.2010
While sorting through hundreds of galaxy images as part of the Galaxy Zoo citizen science project two years ago, Dutch schoolteacher and volunteer astronomer Hanny van Arkel stumbled upon a strange-looking object that baffled professional astronomers.

Two years later, a team led by Yale University researchers has discovered that the unique object represents a snapshot in time that reveals surprising clues about the life cycle of black holes.


The green Voorwerp in the foreground remains illuminated by light emitted up to 70,000 years ago by a quasar in the center of the background galaxy, which has since died out. Credit: WIYN/William Keel/Anna Manning

In a new study, the team has confirmed that the unusual object, known as Hanny's Voorwerp (Hanny's "object" in Dutch), is a large cloud of glowing gas illuminated by the light from a quasar—an extremely energetic galaxy with a supermassive black hole at its center.

The twist, described online in the Astrophysical Journal Letters, is that the quasar lighting up the gas has since burned out almost entirely, even though the light it emitted in the past continues to travel through space, illuminating the gas cloud and producing a sort of "light echo" of the dead quasar.

"This system really is like the Rosetta Stone of quasars," said Yale astronomer Kevin Schawinski, a co-founder of Galaxy Zoo and lead author of the study. "The amazing thing is that if it wasn't for the Voorwerp being illuminated nearby, the galaxy never would have piqued anyone's interest."

The team calculated that the light from the dead quasar, which is the nearest known galaxy to have hosted a quasar, took up to 70,000 years to travel through space and illuminate the Voorwerp—meaning the quasar must have shut down sometime within the past 70,000 years.

Until now, it was assumed that supermassive black holes took millions of years to die down after reaching their peak energy output. However, the Voorwerp suggests that the supermassive black holes that fuel quasars shut down much more quickly than previously thought. "This has huge implications for our understanding of how galaxies and black holes co-evolve," Schawinski said.

"The time scale on which quasars shut down their prodigious energy output is almost entirely unknown," said Meg Urry, director of the Yale Center for Astronomy & Astrophysics and a co-author of the paper. "That's why the Voorwerp is such an intriguing—and potentially critical—case study for understanding the end of black hole growth in quasars."

Although the galaxy no longer shines brightly in X-ray light as a quasar, it is still radiating at radio wavelengths. Whether this radio jet played a role in shutting down the central black hole is just one of several possibilities Schawinski and the team will investigate next.

"We've solved the mystery of the Voorwerp," he said. "But this discovery has raised a whole bunch of new questions."

Other authors of the paper include Shanil Virani, Priyamvada Natarajan, Paolo Coppi (all of Yale University); Daniel Evans (Massachusetts Institute of Technology, Harvard-Smithsonian Center for Astrophysics and Elon University); William Keel and Anna Manning (University of Alabama and Kitt Peak National Observatory); Chris Lintott (University of Oxford and Adler Planetarium); Sugata Kaviraj (University of Oxford and Imperial College London); Steven Bamford (University of Nottingham); Gyula Józsa (Netherlands Institute for Radio Astronomy and Argelander-Institut für Astronomie); Michael Garrett (Netherlands Institute for Radio Astronomy, Leiden Observatory and Swinburne University of Technology); Hanny van Arkel (Netherlands Institute for Radio Astronomy); Pamela Gay (Southern Illinois University Edwardsville); and Lucy Fortson (University of Minnesota).

Citation: Kevin Schawinski et al 2010 ApJ 724 L30 DOI: 10.1088/2041-8205/724/1/L30

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht UNLV study unlocks clues to how planets form
13.12.2018 | University of Nevada, Las Vegas

nachricht Unprecedented Views of the Birth of Planets
13.12.2018 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>