Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic calculations

01.06.2012
Advance will help astrophysicists explore where stars are born
A University of Delaware-led research team reports an advance in the June 1 issue of Science that may help astrophysicists more accurately analyze the vast molecular clouds of gas and dust where stars are born.

Krzysztof Szalewicz, professor of physics and astronomy at UD, was the principal investigator on the National Science Foundation funded research project, which solved equations of quantum mechanics to more precisely describe the interactions between molecules of hydrogen and carbon monoxide, the two most abundant gases in space.

Such calculations are important to spectroscopy, the science that identifies atoms or molecules by the color of light they absorb or emit. Sir Isaac Newton discovered that sunlight shining through a prism would separate into a rainbow of colors. Today, spectroscopy is essential to fields ranging from medical diagnostics to airport security.

In astrophysics, spectrometers attached to telescopes orbiting in space measure light across the visible, infrared, and microwave spectrum to detect and quantify the abundance of chemical elements and molecules, as well as their temperatures and densities, in places such as the vast Orion Nebula, a celestial maternity ward crowded with newborn stars, some 1,500 light years away.

Whereas carbon monoxide — the second-most abundant molecule in space — is easily detected by spectrometers, such is not the case for hydrogen. Despite ranking as the most abundant molecule in space, hydrogen emits and absorbs very little light in the spectral ranges that can be observed. Thus, researchers must deduce information about molecular hydrogen from its weak interactions with carbon monoxide in the interstellar medium (the stuff between the stars).

“The hydrogen spectra get lost on the way, but carbon monoxide is like a lighthouse — its spectra are observed more often than those of any other molecule,” Szalewicz says. “You can indirectly tell what the density of hydrogen is from the carbon monoxide spectra.”

Szalewicz and co-authors Piotr Jankowski, a former UD postdoctoral researcher who is now on the chemistry faculty at Nicolaus Copernicus University in Torun, Poland, and A. Robert W. McKellar, from the National Research Council in Ottawa, Canada, wanted to revisit the spectra of the hydrogen and carbon monoxide complex. The first time such a calculation was done was 14 years ago by Szalewicz and Jankowski, parallel to an accurate measurement by McKellar.

In their computational model, the scientists needed to determine first how electrons move around nuclei. To this end, they included simultaneous excitations of up to four electrons at a time. The energy levels produced by the rotations and vibrations of the nuclei then were computed and used to build a theoretical spectrum that could be compared with the measured one.

The team’s calculations, accomplished with the high-powered kolos computing cluster at UD, have resulted in theoretical spectra 100 times more accurate than those published 14 years ago. The theoretical and experimental spectra are now in near-perfect agreement, which allowed the team to “assign” the spectrum, that is, to determine how each spectral feature is related to the underlying motion of the nuclei, Szalewicz says.

The combined theoretical and experimental knowledge about this molecular complex now can be used to analyze recent results from satellite observatories to search for its direct spectral signal. Even more importantly, this knowledge can be used to get better information about the hydrogen molecule in space from indirect observations, Szalewicz notes.

“Spectroscopy provides the most precise information about matter that is available,” he says. “I am pleased that our computations have untangled such a complex problem.”

Szalewicz’s expertise is in numerically solving the equations for the motions of electrons resulting in molecules attracting or repelling each other and then using these interactions to look at different properties of clusters and condensed phases of matter.

His research has unveiled hidden properties of water and found a missing state in the beryllium dimer, both results previously reported in Science, and his findings about helium may lead to more accurate standards for measuring temperature and pressure.

Szalewicz was elected to the International Academy of Quantum Molecular Science in 2010 and is a fellow of the American Physical Society.

Article by Tracey Bryant

Photo by Ambre Alexander

Andrea Boyle | EurekAlert!
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

NIH scientists combine technologies to view the retina in unprecedented detail

14.11.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>