Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool down fast to advance quantum nanotechnology

21.04.2020

Rapidly cooling magnon particles proves a surprisingly effective way to create an elusive quantum state of matter, called a Bose-Einstein condensate. The discovery can help advance quantum physics research and is a step towards the long-term goal of quantum computing at room temperature.

An international team of scientists have found an easy way to trigger an unusual state of matter called a Bose-Einstein condensate. The new method, recently described in the journal Nature Nanotechnology, is expected to help advance the research and development of quantum computing at room temperature.


Magnon gas particles bounce around in many directions inside a magnetic nanostructure. When rapidly cooled, they all spontaneously jump into the same state, forming a Bose-Einstein condensate (BEC).

Dr. Andrii Chumak, Technische Universität Kaiserslautern/ Universität Wien

The team, led by physicists at the Technische Universität Kaiserslautern (TUK) in Germany and University of Vienna in Austria, generated the Bose-Einstein condensate (BEC) through a sudden change in temperature: first heating up quasi-particles slowly, then rapidly cooling them down back to room temperature.

They demonstrated the method using quasi-particles called magnons, which represent the quanta of magnetic excitations of a solid body.

“Many researchers study different types of Bose-Einstein condensates,” said Professor Burkard Hillebrands from TUK, one of the leading researchers in the field of BEC. “The new approach we developed should work for all systems.”

Puzzling and spontaneous

Bose-Einstein condensates, named after Albert Einstein and Satyendra Nath Bose who first proposed they exist, are a puzzling type of matter. They are particles that spontaneously all behave the same way on the quantum level, essentially becoming one entity. Originally used to describe ideal gas particles, Bose-Einstein condensates have been established with atoms, as well as with quasi-particles such as bosons, phonons and magnons.

Creating Bose-Einstein condensates is tricky business because, by definition, they have to occur spontaneously. Setting up the right conditions to generate the condensates means not trying to introduce any kind of order or coherence to encourage the particles to behave the same way; the particles have to do that themselves.

Currently, Bose-Einstein condensates are formed by decreasing the temperature to near absolute zero, or by injecting a large number of particles at room temperature into a small space. However, the room temperature method, which was first reported by Hillebrands and collaborators in 2005, is technically complex and only a few research teams around the world have the equipment and know-how required.

The new method is much simpler. It requires a heating source, and a tiny magnetic nanostructure, measuring a hundred times smaller than the thickness of a human hair.

“Our recent progress in the miniaturization of magnonic structures to nanoscopic scale allowed us to address BEC from completely different perspective,” said Professor Andrii Chumak from the University of Vienna.

The nanostructure is heated up slowly to 200°C to generate phonons, which in turn generate magnons of the same temperature. The heating source is turned off, and the nanostructure rapidly cools down to room temperature in about a nanosecond. When this happens, the phonons escape to the substrate, but the magnons are too slow to react, and remain inside the magnetic nanostructure.

Michael Schneider, lead paper author and a PhD student in TUK’S Magnetism Research Group, explained why this happens: “When the phonons escape, the magnons want to reduce energy to stay in equilibrium. Since they cannot decrease the number of particles, they have to decrease energy in some other way. So, they all jump down to the same low energy level.”

By spontaneously all occupying the same energy level, the magnons form a Bose-Einstein condensate.

“We never introduced coherence in the system,” Chumak said, “so this is a very pure and clear way to create Bose-Einstein condensates.”

Unexpected result

As is often the case in science, the team made the discovery quite by accident. They had set out to study a different aspect of nanocircuits when strange things began to happen.

“At first we thought something was really wrong with our experiment or data analysis,” Schneider said.

After discussing the project with collaborators at TUK and in the U.S., they tweaked some experimental parameters to see if the strange thing was in fact a Bose-Einstein condensate. They verified its presence with spectroscopy techniques.

The finding will primarily interest other physicists studying this state of matter. “But revealing information about magnons and their behavior in a form of macroscopic quantum state at room temperature could have bearing on the quest to develop computers using magnons as data carriers,” Hillebrands said.

Chumak stressed the importance of the collaboration within TUK’S OPTIMAS Research Group towards solving the mystery. Combining his team’s expertise in magnonic nanostructures with Hillebrand’s expertise in magnon Bose-Einstein condensates was essential. Their research has received significant support from two European Research Council (ERC) grants.

Original Publication:
M. Schneider, et al., Bose-Einstein Condensation of Quasi-Particles by Rapid Cooling, Nature Nanotechnology DOI: 10.1038/s41565-020-0671-z, (2020).

Scientific Contact:
Univ.-Prof. Dr. Andrii Chumak
Nanomagnetism and Magnonics, Faculty of Physics, University of Vienna
Boltzmanngasse 5, 1090 Vienna
E: andrii.chumak@univie.ac.at
T: +43-1-4277-73910
M: +43-664-60277-73910
W: https://nanomag.univie.ac.at/

Prof. Dr. Burkard Hillebrands
AG Magnetismus, Fachbereich Physik, Technische Universität Kaiserslautern
Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern
E: hilleb@physik.uni-kl.de
T: +49 631 205-4228
W: https://www.physik.uni-kl.de/hillebrands/home/

Image rights: Dr. Andrii Chumak, Technische Universität Kaiserslautern/ Universität Wien

Image caption: (From left to right) Magnon gas particles bounce around in many directions inside a magnetic nanostructure. When rapidly cooled, they all spontaneously jump into the same state, forming a Bose-Einstein condensate (BEC). This is a much simpler method to generate the condensate, which could have implications for quantum computing.

Funding information:
The research was performed in the frames of ERC Starting Grant MagnonCircuits (A. Chumak), ERC Advanced Grant Super-Magnonics (B. Hillebrands) and Collaborative Research Center SFB 173 Spin+X.

Wissenschaftliche Ansprechpartner:

Univ.-Prof. Dr. Andrii Chumak
Nanomagnetism and Magnonics, Faculty of Physics, University of Vienna
Boltzmanngasse 5, 1090 Vienna
E: andrii.chumak@univie.ac.at
T: +43-1-4277-73910
M: +43-664-60277-73910
W: https://nanomag.univie.ac.at/

Prof. Dr. Burkard Hillebrands
AG Magnetismus, Fachbereich Physik, Technische Universität Kaiserslautern
Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern
E: hilleb@physik.uni-kl.de
T: +49 631 205-4228
W: https://www.physik.uni-kl.de/hillebrands/home/

Originalpublikation:

Original Publication:
M. Schneider, et al., Bose-Einstein Condensation of Quasi-Particles by Rapid Cooling, Nature Nanotechnology DOI: 10.1038/s41565-020-0671-z, (2020).

TU Kaiserslautern | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>