Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool Calculations for Cold Atoms

03.09.2014

New theory of universal three-body encounters

Chemical reactions drive the mechanisms of life as well as a million other natural processes on earth. These reactions occur at a wide spectrum of temperatures, from those prevailing at the chilly polar icecaps to those at work churning near the earth’s core.

At nanokelvin temperatures, by contrast, nothing was supposed to happen. Chemistry was expected to freeze up. Experiments and theoretical work have now show that this is not true. Even at conditions close to absolute zero atoms can interact and manage to form chemical bonds.

Within this science of ultracold chemistry, there is a sub-field that deals with “Efimov states,” named for Russian physicist Vitaly Efimov. In 1970 he predicted that under some conditions all two-particle bound states would be unstable while (paradoxically) some three-particle states could exist. Such states were eventually seen experimentally in 2006, among cesium atoms (see Related JQI Article below).

Two scientists at the Joint Quantum Institute have now formulated a universal theory to describe the properties of these Efimov states, a theory that, for the first time, does not need extra adjustable unknown parameters . This should allow physicists to predict the rates of chemical processes involving three atoms---or even more---using only a knowledge of the interaction forces at work.

The JQI authors, Yujun Wang and Paul Julienne, publish their results in the journal Nature Physics (see Reference Publication below).

PICO-ELECTRON VOLTS

Efimov states are fragile. They depend for their existence on quantum effects and on the subtle interplay of two phenomena: Feshbach resonance and van der Waal forces. Quantum effects are necessarily at work at ultracold temperatures in the nano-kelvin regime. Here atoms should be viewed not as hard balls, typically a few tenths of nanometers across, but as wave packets, blobs extending over hundreds of nm.

It is common, when talking about colliding particles, to see them as cars speeding toward each other, perhaps meeting head on or glancing off at a relative angle. It is more unusual to visualize the collision if the “particles” are so large as to overlap each other at relatively great distances. More strange still if three such particles are involved in an interaction whose result will be a loosely-bound confederation.

In the study of Efimov states, the primary force at work among the atoms is the van der Waals force, named for Dutch physicist Johannes Diderik van der Waals. This long-range force among atoms or molecules arises from the temporary appearance of electric dipole moments in the particles.

Even for a neutral atom, a momentary imbalance of charge---more of the atomic electrons’ negative charge might appear to the left, say, leaving a positive preponderance on the right---will constitute an electric dipole, which in turn can attract an atom with a complementary dipole orientation. This induced-dipole force varies at the inverse sixth power of the distance between the two particles.

Another way of controlling inter-particle collisions at ultracold temperatures is to turn on an external magnetic field. For certain ranges of field strength, two particles can be coaxed to form semi-stable objects called Feshbach resonances, named for US physicist Herman Feshbach. Feshbach resonances are commonly used in cold-physics to control interactions, and this is especially true in the study of Efimov states.

Often Feshbach resonances are described in terms of a parameter, a, called the scattering length, denoting the effective distance over which the interaction takes place If a is positive and large (much larger than the nominal range of the force between the atoms), weak binding of atoms can happen. If a is negative, a slight attraction of two atoms can occur but not binding. If, however, a is large and three atoms are present, then the Efimov state can appear. Indeed an infinite number of such states can occur.

In general since it allows interactions over large distances, the Feshbach effect is more important than the van der Waals force. But the JQI research has shown how the van der Waals force can be decisive in forming Efimov states, especially when the scattering length is short. Many scientists had believed that making consistent predictions of triplet-forming interactions would be difficult to make. Instead, the Wang-Julienne model successfully incorporates this short-distance regime.

Thus there should be a series of Efimov states, with various binding energies. But unlike atoms, where the quantum energy levels (denoting how much energy is needed to liberate the electron from its atomic binding) are in the electron volt (eV) range, Efimof states are typified by quantum energies of billionths of an eV or less.

THE NEW JQI THEORY

Wang and Julienne build their theory of 3-body van der Waals physics around the Schrödinger equation, the equation introduced by Erwin Schrödinger in the 1920s to treat particles as waves. Only here it is three particles---viewed as three sets of waves, or rather as a complex of waves representing the three particles---carefully studied in pairwise fashion to simulate an effective composite force field in which the three particles operate.

The result is a theoretical tool that can predict the important Efimov properties, namely the energies of the Efimov states, the widths of those states (essentially the fuzziness of our knowledge of the precise energy value), and the rates at which the three-particle states will form inside a gas of ultracold atoms.

“Our theory works for a full range of scattering lengths,” said Yujun Wang describing the JQI work, “whereas the previous theories could only apply to large scattering lengths. We don't need adjustable parameters. The only inputs in our theory are the known two-body Feshbach parameters and our calculations using the Schrodinger equation. So our theory does not rely on any of the unknown three-body inputs that have been used in previous theories to fit the experimental data. In these two aspects our theory is more comprehensive and powerful. We can make quantitative predictions without relying on the unknowns, so that our results can be directly compared to experiments.”


Figure 1. Three panels illustrate the condition of Efimov states (3-atom stable states). The upper, bell-shaped surface represents the probability density for each of the three geometries, while the gray surface represents the strength of the van der Waals force for that geometry. Left panel: the three interacting atoms lie in an equilateral triangle formation. Middle panel: two of the atoms are rather closer together than to the third atom. Right panel: the geometry of the middle panel but with the atoms lying farther apart from each other. The dimples in the probability density surface reflect the more complicated interaction when two of the atoms are close together.Credit JQI/Yujun

Research Contact
Paul Julienne
Yujun Wang
Media Contact
Phillip F. Schewe|
(301) 403-0989

Phillip F. Schewe | Eurek Alert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>