Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlled coupling of light and matter

05.03.2018

Researchers from Würzburg and London have built the foundations for a new field of nano-optics: they have succeeded in controlling the coupling of light and matter at room temperature.

Publishing in a journal like Science Advances usually heralds a particularly exciting innovation. Now, physicists from the Julius-Maximilians-Universität Würzburg (JMU) in Germany and Imperial College London in the UK are reporting controlled coupling of light and matter at room temperature.


Artistic representation of a plasmonic nano-resonator realized by a narrow slit in a gold layer. Upon approaching the quantum dot (red) to the slit opening the coupling strength increases.

Image: Heiko Groß

This achievement is particularly significant as it builds the foundations for a realization of practical photonic quantum technologies. Indeed, while many demonstrations of optical quantum processes require cryogenic temperatures to protect the quantum states, the present work elevates the quantum processes to room temperature and introduces controllability – both vital elements of quantum technologies such as quantum computers, which to a certain extent "calculate with light" and are conceivably many times more powerful than existing computers.

Emitted photons are trapped and re-absorbed

A light particle (photon) is generated when, for example, an exited molecule or a quantum dot returns to its low-energy ground state. This process is generally known as spontaneous emission and is usually irreversible, i.e. an emitted photon will not simply return to the emitter to be absorbed again.

But if the emitter is intimately coupled to something like a storage element for light, a so-called optical resonator, then the emitted photon remains in the vicinity of the emitter for a sufficiently long period of time, considerably boosting its chance to be reabsorbed. "Such a reversal of spontaneous emission is of highest importance for quantum technologies and information processing, not least as it facilitates exchange of quantum information between matter and light while preserving the quantum properties of both," says Professor Ortwin Hess of Imperial College.

It’s showtime for plasmonic nano-resonators

Such an exchange of quantum information is, however, usually only possible at very low temperatures, which renders spectral lines of emitters spectrally very sharp and therefore increases the probability of absorption. The teams of professors Bert Hecht and Ortwin Hess are now among the pioneering groups in the world who have succeeded in achieving the state of strong coupling of light and a single quantum emitter (quantum dot) at room temperature.

To achieve the re-absorption of a photon even at room temperature, the researchers use a plasmonic nanoresonator, which has the form of an extremely narrow slit in a thin gold layer. "This resonator allows us to spatially concentrate the electromagnetic energy of a stored photon to an area which is not much larger than the quantum dot itself," explains Professor Hecht’s co-worker Heiko Groß. As a result, the stored photon is re-absorbed with high probability by the emitter.

Precise control of the coupling between emitter and resonator

While similar ideas have already been implemented by other researchers in systems such as single molecules, in the work published now the researchers from London and Würzburg have managed to also control the coupling between the resonator and the quantum emitter by implementing a method that allows them to continuously change the coupling and, in particular, to switch it on and off in a precise manner. The team achieved this by attaching the nano-resonator to the tip of an atomic force microscope. This way they are able to move it with nanometer precision within the immediate vicinity of the emitter - in this case a quantum dot.

Ultrafast exchange of energy between emitter and resonator

Building on their accomplishment, the researchers now hope to be able to controllably manipulate the coupling of the quantum dot and the resonator not only by changing their distance but also through external stimuli - possibly even by single photons. This would result in unprecedented new possibilities in the challenging route towards a realization of optical quantum computers.

"It is clearly a most useful feature that the exchange of energy between the quantum dot and the resonator here happens extremely fast," says Groß. This solves a challenge of a low-temperature set-up: At very low temperatures, the oscillation of energy between light and matter is significantly slowed down by the long storage times of the resonator.

Heiko Groß, Joachim M. Hamm, Tommaso Tufarelli, Ortwin Hess, Bert Hecht: Near-field strong coupling of single quantum dots. Science Advances 2018; 4: eaar4906. March 2018, DOI: doi.org/10.1126/sciadv.aar4906

Contact
Heiko Groß and Prof. Dr. Bert Hecht, Physics Institute of the University of Würzburg, T +49 931 31-85863, hecht@physik.uni-wuerzburg.de
Ortwin Hess, The Blackett Laboratory, Imperial College London, T +44 20 7594 7586, o.hess@imperial.ac.uk

Corinna Russow/Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>