Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conquering the Extreme

04.05.2018

How microorganisms support multicellular organisms with the colonisation of hostile environments

From hot and nutrient-poor deserts to alternating dry and wet intertidal zones, right through to the highest water pressure and permanent darkness in the deep sea: in the course of its development over millions of years, life has conquered even the most extreme places on earth.


Understanding host-microbe interactions may be informative even when attempting to remotely detect the presence of life in extreme conditions on terrestrial planets.

Credit: ESO/G. Beccari, License: CC BY 4.0

That termites can live off indigestible wood, plants can exist in deserts - seemingly without water and nutrients, or sea anemones can tolerate the constant change between underwater and dry environments in intertidal zones, apparently also depends on close cooperation with their bacterial symbionts.

Life scientists around the world are currently investigating the manner in which the symbiotic interaction of microorganisms and hosts, in the functional unit of a metaorganism, supports the colonisation of such extreme habitats. An international research team under the leadership of the Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms” at Kiel University has now presented an inventory of mechanisms, with which the interactions of hosts and symbionts support life under extreme environmental conditions, or even make it possible at all.

Together with colleagues from Saudi Arabia’s King Abdullah University of Science and Technology (KAUST), the researchers have now described in detail for the first time in the scientific journal Zoology how microorganisms can promote the growth and the evolutionary fitness of different organisms in extreme locations.

An important factor in response to changing living conditions is time. If the environment at a particular place changes very quickly, for example through drastic change in physical and chemical conditions such as light or oxygen levels, the more highly-developed multicellular organisms in particular find the adjustment difficult. Their ability to adapt is too slow, because the required genetic change can only be completed over the course of several generations.

"Here microorganisms can give their host organisms an advantage," emphasised Professor Thomas Bosch, cell and developmental biologist at Kiel University and spokesperson for the CRC 1182. "With bacteria, for example, the evolutionary processes occur much more rapidly. They can partially transfer this ability to respond much faster to environmental changes to their hosts, and thereby assist the hosts with adaptation," continued Bosch.

The lack of food or the inability to actually use the available nutrients further limits the available habitats. The metabolisms of many organisms are geared to specific optimal living conditions, and struggle to cope in extreme areas. Here too, it is often the symbiotic relationships with bacteria which enable plants and animals to expand the functioning of their own metabolisms. Thus, different organisms can, for example, exchange nutrients with their bacterial partners, and thereby utilise food sources which their metabolisms otherwise could not process.

Certain symbiotic bacteria, which colonise the roots of plants, help them to absorb elements such as nitrogen and other minerals in dry and nutrient-poor locations. Other bacteria support plant growth by increasing tolerance to saline soil. In the future, researchers will focus on investigating such helpful bacterial cultures, regarding their applicability to crops. Potentially, a better understanding of plants as metaorganisms could also help to utilise previously-unusable deserts for agriculture in the future.

In addition, microbial symbionts enable various organisms to develop a high tolerance towards a rapidly-changing environment: fixed cnidarians in the inter-tidal zones of different oceans can, for example, quickly adapt to the extreme changes in their living conditions because they can also abruptly change the composition of their bacterial colonisation. Behind this lie mechanisms such as the direct exchange of genetic information between different bacterial species, which controls the exclusion or inclusion of specific types of bacteria in the metaorganism.

"In sea anemones, their bacterial colonisation changes in accordance with the prevailing site conditions," emphasised Dr Sebastian Fraune, research associate at the Zoological Institute at Kiel University. "The organisms can potentially save this flexible bacterial configuration, and recall it in the event of a change in their habitat, in order to cope with the new conditions," continued Fraune.

From the investigation of this bacterial-controlled ability to adapt to fast-changing environmental conditions, it may be possible in future to draw conclusions about the effects of climate change on organisms and ecosystems, or even to deduce adaptation strategies.
Further research will clarify how the health and fitness of a metaorganism depend on the adaptability of its individual partners, and what effects arise from changing individual elements of this complex structure. The new findings thus emphasise the fundamental importance of researching the multi-organismic relationships between hosts and microorganisms, in particular, too, for the understanding of life in a variable and extreme environment.

Original publication:
Corinna Bang, Tal Dagan, Peter Deines, Nicole Dubilier, Wolfgang J. Duschl, Sebastian Fraune, Ute Hentschel, Heribert Hirt, Nils Hülter, Tim Lachnit, Devani Picazo, Lucia Pita, Claudia Pogoreutz, Nils Rädecker, Maged M. Saad, Ruth A. Schmitz, Hinrich Schulenburg, Christian R. Voolstra, Nancy Weiland-Bräuer, Maren Ziegler, Thomas C.G. Bosch (2018): Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Biology https://dx.doi.org/10.1016/j.zool.2018.02.004

A photo is available for download under:
http://www.uni-kiel.de/download/pm/2018/2018-131-1.jpg
Associated microbiota can promote the host’s vigour and proliferation in extreme environments. Such insights may be informative even when attempting to remotely detect the presence of life in extreme conditions on terrestrial planets. The Photograph shows the spectacular Orion Nebula,
taken by ESO’s VLT Survey Telescope (VST).
Credit: ESO/G. Beccari, License: CC BY 4.0, http://www.eso.org/public/images/eso1723a/

Contact:
Prof. Thomas Bosch
Zoological Institute, Kiel University
Tel.: +49 (0)431-880-4170
E-mail: tbosch@zoologie.uni-kiel.de

More information:
Priority research area “Kiel Life Science”, Kiel University
http://www.kls.uni-kiel.de

Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms", Kiel University: http://www.metaorganism-research.com

KAUST news release on the related „Metaorganism Frontier Research Workshop“:
http://www.kaust.edu.sa/en/news/exploring-the-metaorganism-frontier

Christian-Albrechts-Universität zu Kiel
Press, Communication and Marketing, Dr Boris Pawlowski, Text: Christian Urban
Postal address: D-24098 Kiel, Germany, Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni
Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Physics and Astronomy:

nachricht Belle II yields the first results: In search of the Z′ boson
06.04.2020 | Max-Planck-Institut für Physik

nachricht Scientists see energy gap modulations in a cuprate superconductor
02.04.2020 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

 
Latest News

TU Dresden chemists develop noble metal aerogels for electrochemical hydrogen production and other applications

06.04.2020 | Life Sciences

Lade-PV Project Begins: Vehicle-integrated PV for Electrical Commercial Vehicles

06.04.2020 | Power and Electrical Engineering

Lack of Knowledge and Uncertainty about Algorithms in Online Services

06.04.2020 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>