Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer simulations show how special the solar system is

11.08.2008
Prevailing theoretical models attempting to explain the formation of the solar system have assumed it to be average in every way. Now a new study by Northwestern University astronomers, using recent data from the 300 exoplanets discovered orbiting other stars, turns that view on its head.

The solar system, it turns out, is pretty special indeed. The study illustrates that if early conditions had been just slightly different, very unpleasant things could have happened -- like planets being thrown into the sun or jettisoned into deep space.

Using large-scale computer simulations, the Northwestern researchers are the first to model the formation of planetary systems from beginning to end, starting with the generic disk of gas and dust that is left behind after the formation of the central star and ending with a full planetary system. Because of computing limitations, earlier models provided only brief glimpses of the process.

The researchers ran more than a hundred simulations, and the results show that the average planetary system's origin was full of violence and drama but that the formation of something like our solar system required conditions to be "just right."

The study, titled "Gas Disks to Gas Giants: Simulating the Birth of Planetary Systems," will be published in the Aug. 8 issue of the journal Science.

Before the discovery in the early 1990s of the first planets outside the solar system, our system's nine (now eight) planets were the only ones known to us. This limited the planetary formation models, and astronomers had no reason to think the solar system unusual.

"But we now know that these other planetary systems don't look like the solar system at all," said Frederic A. Rasio, a theoretical astrophysicist and professor of physics and astronomy in Northwestern's Weinberg College of Arts and Sciences. He is senior author of the Science paper.

"The shapes of the exoplanets' orbits are elongated, not nice and circular. Planets are not where we expect them to be. Many giant planets similar to Jupiter, known as 'hot Jupiters,' are so close to the star they have orbits of mere days. Clearly we needed to start fresh in explaining planetary formation and this greater variety of planets we now see."

Using the wealth of exoplanet data collected during the last 15 years, Rasio and his colleagues have been working to understand planet formation in a much broader sense than was possible previously. Modeling an entire planetary system -- the varied physical phenomena associated with gas, gravity and grains of material, on such a variety of scales -- was a daunting challenge.

The work required very powerful computers. The researchers also had to judiciously decide what information was important and what was not, so as to speed up the calculations. They decided to follow the growth of planets, the gravitational interaction between planets, and the whole planetary system in its entire spatial extent. They chose not to follow the gas disk's fluid dynamics in fine detail, but rather more generally. As a result, they were able to run simulations spanning a planetary system's entire formation.

The simulations suggest that an average planetary system's origin is extremely dramatic. The gas disk that gives birth to the planets also pushes them mercilessly toward the central star, where they crowd together or are engulfed. Among the growing planets, there is cut-throat competition for gas, a chaotic process that produces a rich variety of planet masses.

Also, as the planets approach each other, they frequently lock into dynamical resonances that drive the orbits of all participants to be increasingly elongated. Such a gravitational embrace often results in a slingshot encounter that flings the planets elsewhere in the system; occasionally, one is ejected into deep space. Despite its best efforts to kill its offspring, the gas disk eventually is consumed and dissipates, and a young planetary system emerges.

"Such a turbulent history would seem to leave little room for the sedate solar system, and our simulations show exactly that," said Rasio. "Conditions must be just right for the solar system to emerge."

Too massive a gas disk, for example, and planet formation is an anarchic mess, producing "hot Jupiters" and noncircular orbits galore. Too low-mass a disk, and nothing bigger than Neptune -- an "ice giant" with only a small amount of gas -- will grow.

"We now better understand the process of planet formation and can explain the properties of the strange exoplanets we've observed," said Rasio. "We also know that the solar system is special and understand at some level what makes it special."

"The solar system had to be born under just the right conditions to become this quiet place we see. The vast majority of other planetary systems didn't have these special properties at birth and became something very different."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: Jupiter Neptune Orbit exoplanets planetary formation planetary system solar system

More articles from Physics and Astronomy:

nachricht Time-resolved measurement in a memory device
19.02.2020 | ETH Zurich

nachricht Studying electrons, bridging two realms of physics: connecting solids and soft matter
18.02.2020 | Tokyo University of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>