Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer simulations show how special the solar system is

11.08.2008
Prevailing theoretical models attempting to explain the formation of the solar system have assumed it to be average in every way. Now a new study by Northwestern University astronomers, using recent data from the 300 exoplanets discovered orbiting other stars, turns that view on its head.

The solar system, it turns out, is pretty special indeed. The study illustrates that if early conditions had been just slightly different, very unpleasant things could have happened -- like planets being thrown into the sun or jettisoned into deep space.

Using large-scale computer simulations, the Northwestern researchers are the first to model the formation of planetary systems from beginning to end, starting with the generic disk of gas and dust that is left behind after the formation of the central star and ending with a full planetary system. Because of computing limitations, earlier models provided only brief glimpses of the process.

The researchers ran more than a hundred simulations, and the results show that the average planetary system's origin was full of violence and drama but that the formation of something like our solar system required conditions to be "just right."

The study, titled "Gas Disks to Gas Giants: Simulating the Birth of Planetary Systems," will be published in the Aug. 8 issue of the journal Science.

Before the discovery in the early 1990s of the first planets outside the solar system, our system's nine (now eight) planets were the only ones known to us. This limited the planetary formation models, and astronomers had no reason to think the solar system unusual.

"But we now know that these other planetary systems don't look like the solar system at all," said Frederic A. Rasio, a theoretical astrophysicist and professor of physics and astronomy in Northwestern's Weinberg College of Arts and Sciences. He is senior author of the Science paper.

"The shapes of the exoplanets' orbits are elongated, not nice and circular. Planets are not where we expect them to be. Many giant planets similar to Jupiter, known as 'hot Jupiters,' are so close to the star they have orbits of mere days. Clearly we needed to start fresh in explaining planetary formation and this greater variety of planets we now see."

Using the wealth of exoplanet data collected during the last 15 years, Rasio and his colleagues have been working to understand planet formation in a much broader sense than was possible previously. Modeling an entire planetary system -- the varied physical phenomena associated with gas, gravity and grains of material, on such a variety of scales -- was a daunting challenge.

The work required very powerful computers. The researchers also had to judiciously decide what information was important and what was not, so as to speed up the calculations. They decided to follow the growth of planets, the gravitational interaction between planets, and the whole planetary system in its entire spatial extent. They chose not to follow the gas disk's fluid dynamics in fine detail, but rather more generally. As a result, they were able to run simulations spanning a planetary system's entire formation.

The simulations suggest that an average planetary system's origin is extremely dramatic. The gas disk that gives birth to the planets also pushes them mercilessly toward the central star, where they crowd together or are engulfed. Among the growing planets, there is cut-throat competition for gas, a chaotic process that produces a rich variety of planet masses.

Also, as the planets approach each other, they frequently lock into dynamical resonances that drive the orbits of all participants to be increasingly elongated. Such a gravitational embrace often results in a slingshot encounter that flings the planets elsewhere in the system; occasionally, one is ejected into deep space. Despite its best efforts to kill its offspring, the gas disk eventually is consumed and dissipates, and a young planetary system emerges.

"Such a turbulent history would seem to leave little room for the sedate solar system, and our simulations show exactly that," said Rasio. "Conditions must be just right for the solar system to emerge."

Too massive a gas disk, for example, and planet formation is an anarchic mess, producing "hot Jupiters" and noncircular orbits galore. Too low-mass a disk, and nothing bigger than Neptune -- an "ice giant" with only a small amount of gas -- will grow.

"We now better understand the process of planet formation and can explain the properties of the strange exoplanets we've observed," said Rasio. "We also know that the solar system is special and understand at some level what makes it special."

"The solar system had to be born under just the right conditions to become this quiet place we see. The vast majority of other planetary systems didn't have these special properties at birth and became something very different."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: Jupiter Neptune Orbit exoplanets planetary formation planetary system solar system

More articles from Physics and Astronomy:

nachricht Light provides spin
19.09.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht The surprising environment of an enigmatic neutron star
18.09.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>