Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer made materials

17.03.2014

Physicists of the Max-Planck-Institut für Eisenforschung are able to predict the properties of structural and functional materials with hitherto unprecedented accuracy.

Point defects, for example missing atoms (so called vacancies) significantly influence the performance and durability of modern materials. Even smallest defect concentrations of 1:100,000 can affect the properties of microelectronic devices like processors, solar cells and structural materials like steel. 


The picture shows the distribution of atoms next to a defect in a copper crystal at its melting point (1084° C). The green spots show the positions of the atoms at the absolute zero point. The dashed grey circle in the middle shows a lattice vacancy, a place where one atom is missing in the lattice. At high temperatures the atoms vibrate around their lattice position, illustrated by the black cloud.

The results of the Max Planck scientists show a significantly different distribution (orange clouds) by considering the interaction of lattice vibrations. The atoms vibrate closer to the vacancy with increasing temperatures. This leads to a change in energies and vacancies and thereby to a higher defect concentration.

Matter is made out of atoms, which form in the case of crystalline materials a highly ordered lattice. However, the individual atoms do not sit motionless on their lattice sites, but vibrate with an extremely high frequency around their positions – scientists therefore speak about lattice vibrations.

To analyse the concentration of defects in a material and draw conclusions about the materials behaviour, there were until now two possible strategies: Theoretical physicists calculated the energy of the lattice-defect formation, which is directly linked to the number of defects, but their methods were limited to the absolute zero point, i.e. to -273.15 °C.

Experimentalists, on the other hand, measured defect concentrations at high temperatures (above 300 °C). In fact, there was always a large temperature range without available data. As a matter of fact, it is exactly this range around room temperature that is important for materials that are used in our everyday life.

Physicists in the department ‘Computational Materials Design’ at the Max-Planck-Institut für Eisenforschung (MPIE) now achieved a breakthrough in the development of computer simulations that are also able to describe this missing temperature range.

“Established methods for the energetics of lattices were previously not able to include the complex interaction of different modes of lattice vibrations. Thanks to various methodical breakthroughs, we are now able to remove this shortcoming for all relevant temperatures. And we were surprized to see how significantly these temperature-dependent interactions influence the amount of defects in a material”, explains Albert Glensk, doctoral student at the MPIE.

“Formerly predicted results for defects in crystalline materials have to be corrected now. Our calculations show that actual defect energies might easily be about 20% lower than previous estimates. More importantly, we are now for the first time able to close the gap between theory and experiment. All experimental data can be perfectly described with our theory”, concludes Glensk.

With these new insights, scientists are able to calculate and predict precisely how many point defects a material has at a certain temperature and derive conclusions about the performance of a material. This serves as an additional corner stone for the optimization of basic materials on the computer and the prediction of their potential failures as well as strategies to avoid them in production processes.

Original publication:
A. Glensk; B. Grabowski; T. Hickel; J. Neugebauer: Breakdown of the Arrhenius Law in Describing Vacancy Formation Energies: The Im-portance of Local Anharmonicity Revealed by Ab initio Thermody-namics. Physical Review X 4 (2014) 011018. American Physical So-ciety.
DOI: 10.1103/PhysRevX.4.011018

Weitere Informationen:

http://www.mpie.de
http://journals.aps.org/prx/edannounce/PhysRevX.4.010001

Yasmin Ahmed Salem | Max-Planck-Institut für Eisenforschung GmbH

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>