Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer-Assisted Accelerator Design

23.04.2014

Custom software tool tests virtual model of proposed next-generation accelerator.

Stephen Brooks uses his own custom software tool to fire electron beams into a virtual model of proposed accelerator designs for eRHIC. The goal: Keep the cost down and be sure the beams will circulate in this proposed next-generation machine.


Brookhaven National Laboratory

Accelerator physicist Stephen Brooks explains how multiple electron beams would circulate in the current design for eRHIC, a proposed electron ion-collider Brookhaven hopes to build using existing RHIC infrastructure.

If you walk by room 201 in Building 911 at the U.S. Department of Energy’s Brookhaven National Laboratory, you might think Stephen Brooks is playing a cool new video game. But Brooks is doing important, innovative work. He’s using his own custom designed software to create a 3-D virtual model of the electron accelerator Brookhaven physicists hope to build inside the tunnel currently housing the Relativistic Heavy Ion Collider (RHIC). His mission is to put the virtual pieces together and help test out designs for eRHIC—a proposed machine that would provide unforeseen insight into the inner structure of protons and heavy ions.

“Once the eRHIC layout is in my code, I put beams through it to verify it works,” Brooks said. “But I can also add errors in the alignment of the magnets, beams, and so on to verify it will work in a practical setting.”

By work he means produce extremely focused high-energy electron beams to pierce into the very heart of RHIC’s counter-circulating protons or heavy ions to create precision 3-D images of gluons—the particles that bind quarks within protons and neutrons, thus imparting visible matter with 99 percent of its mass.

This proposed electron-ion collider would open a new window into nuclear matter, ensuring U.S. leadership in the field for the next several decades. And building such a machine by adding an electron accelerator to the existing RHIC complex would be a cost-effective strategy for achieving this goal.

But keeping the cost down and ensuring functionality of the hundreds of different accelerator components takes planning to be sure things go right.

Designing a subatomic particle racetrack

While there are many codes that can track particles through accelerators, the fully 3-D, interactive nature of Brooks’ code, and the ability to incorporate complex accelerators the size of RHIC, makes it unique.

Using a mouse to navigate from a birds-eye view to a close-up, 3-D, edge-on view of the magnets and the beams circulating inside the machine, he explains, “We can use this code to test that the individual accelerator components in the machine are compatible with each other when they are assembled together.” And to be sure those components will fit within the existing RHIC tunnel, the model incorporates a conventional architectural drawing including physical constraints like concrete walls.

Even more innovative, Brooks’ program incorporates an “evolutionary algorithm optimization feature”—essentially an artificial intelligence mode that can vary any aspect of the accelerator and search for the best design to achieve a particular objective by running repeated simulations.

One goal is to track and minimize the amount of synchrotron radiation emitted by the electron beam. That’s energy that spews off tangent to the charged particles’ circular path, like water droplets flying off a wet towel swung around in a circle, gradually depleting the beam’s energy.

“The design tool also determines, for a given layout of magnets and sequence of beam energies, whether each beam will be focused in a stable way and not spread out in size and become unuseable,” Brooks said.

Two rings are better (and cheaper) than six

Testing different designs and parameters, Brooks and other accelerator scientists arrived at a plan that circulates multiple beams of electrons at a range of energies within each of two electron accelerator rings. It incorporates an innovative “non-scaling, fixed field, alternating gradient” (FFAG) accelerator design originally developed by Brookhaven physicist Dejan Trbojevic, who supervises Brooks.

The “alternating gradient”—alternating directions of the magnetic field—keeps the design relatively compact. “Fixed field” means that beams don’t have to be injected periodically and ramped up to reach higher energy. Instead, the beam can be on continuously as it is brought up to “speed.” And because non-scaling FFAG accelerators can be made out of fairly standard accelerator magnets, such a design would achieve high collision rates while controlling costs.

“Trbojevic realized that you can build magnet channels with stronger focusing than normal that can tolerate a large range of beam energies, with the beams of different energy transported side-by-side of each other within the same ring,” Brooks said. “At eRHIC, the beams would spiral through the machine with the external linear accelerator adding energy each turn, and the beam then following the next path farther out but still within the same beam pipe.”

Brooks’ optimization software tool helped the team identify the ideal design: with five electron beams in a low-energy ring, spanning a factor of 5x in energy, and up to 11 electron beams in a high-energy ring, spanning a factor of 2.7x. This design, fitting all these beams within two stacked accelerator rings instead of the six that were called for in an earlier design, represents a significant cost savings.

So, with its results pointing to fewer rings, relatively low-cost magnets, continuous beam, minimized energy loss, and a plan for how to absorb that lost energy, Brooks’ “gaming” with the eRHIC accelerator design seems to be paying off.

This story is available at: http://www.bnl.gov/newsroom/news.php?a=24732

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Karen McNulty Walsh | newswise
Further information:
http://www.newswise.com/articles/view/616737/?sc=dwhr&xy=5048111

Further reports about: Accelerator Brookhaven Design Laboratory eRHIC electron beams ions particles protons

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>