Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Competition in the Quantum World

21.05.2013
Innsbruck physicists led by Rainer Blatt and Peter Zoller experimentally gained a deep insight into the nature of quantum mechanical phase transitions.

They are the first scientists that simulated the competition between two rival dynamical processes at a novel type of transition between two quantum mechanical orders. They have published the results of their work in the journal Nature Physics.


The physicists engineer a classical environment, which generates dissipative dynamics, leading to fragile long-range quantum mechanical correlations between distant particles.
IQOQI/Ritsch

“When water boils, its molecules are released as vapor. We call this change of the physical state of matter a phase transition,” explains Sebastian Diehl from the Institute of Theoretical Physics at the University of Innsbruck. Together with his colleagues from the Institute for Experimental Physics and the theorist Markus Mueller from the Complutense University of Madrid, he studied the transition between two quantum mechanical orders in a way never before observed. The quantum physicists in Innsbruck use a new device for the experiment, which is currently considered to be one of the most promising developments in quantum physics: a quantum simulator. It is based on a small-scale quantum computer and can simulate physical phenomena a classical computer cannot investigate efficiently. “Such a quantum simulator allows us to experimentally study quantum phenomena in many-body systems that are coupled to their environment,” explain experimental physicists Philipp Schindler and Thomas Monz.

Observing the competition
With just a few trapped ions the scientists simulate the complex physical processes of quantum mechanical phase transitions. To achieve this, they have to manipulate and control the particles with high accuracy; the experimental physicists in Innsbruck are world leaders in this field. “For this experiment we use a programmable quantum simulator with up to five ions,” says Philipp Schindler. One of the particles is used as a means to couple the system to the classical environment in a controlled manner. The other ions are used for carrying out quantum operations. “We call this an open quantum simulator. Usually we want to suppress this coupling because it destroys the fragile quantum effects in the system. Here, however, we use it to bring order into the quantum mechanical system,” explains Schindler. “In our specific case, we engineer a classical environment, which generates dissipative dynamics, leading to fragile long-range quantum mechanical correlations between distant particles.” In the following step, this dynamics is then set in competition with a different type of interactions, which interrupts the dynamics that create the quantum mechanical order. “By doing this, we are able to observe how the competition between these two processes takes place and what precisely occurs right at the transition between two distinct orders of matter,” explains theoretical physicist Sebastian Diehl.
Error reduction
The experiment demands an enormous degree of precision, which requires immediate error corrections to be able to simulate the physical processes correctly. Since a comprehensive error correction, as developed for quantum computers, involves considerable resource overheads, the physicists in Innsbruck chose another promising alternative path. They identified the most important sources of error occurring during the simulation and specifically targeted them. Schindler is convinced: “This way of error reduction will surely set an example for other experiments. While general quantum error correction remains a long-term goal, we may be able to successfully use this type of error correction a lot sooner for reliable quantum simulation of larger systems,” adds Markus Mueller.

Interweaving theory with experiment
Such an experimental study of the nature of quantum mechanical phase transitions is internationally unique. It was only possible because advanced experimental know-how was successfully combined with theoretical research, which was carried out in close collaboration between physicists from Innsbruck and Madrid. “This link between theoretical and experimental physicists who work closely together, and in Innsbruck under one roof, is possible in very few places. It is also one of the great strengths of quantum physics research carried out in Innsbruck. And this research, once again, led us into an area of physics that hadn’t been explored before,” says Rainer Blatt. “In this experiment the physics of many-body systems is successfully simulated with a few trapped ions. This clearly shows the potential and the possibilities of quantum simulation,” adds Peter Zoller.

Publication: Quantum simulation of dynamical maps with trapped ions. P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A. Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller und R. Blatt, Advance online publication, Nature Physics am 19. Mai 2013 DOI: 10.1038/NPHYS2630

Contact:
Philipp Schindler
Institute for Experimental Physics
University of Innsbruck
Phone: +43 512 507-52453
Email: philipp.schindler@uibk.ac.at

Christian Flatz
Public Relations
University of Innsbruck
Phone: +43 512 507-32022
Cell: +43 676 872532022
Email: christian.flatz@uibk.ac.at
Weitere Informationen:
http://dx.doi.org/10.1038/NPHYS2630
- Quantum simulation of dynamical maps with trapped ions. P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A. Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller und R. Blatt, Advance online publication, Nature Physics on May 19, 2013
http://www.quantumoptics.at
- Quantum Optics and Spectroscopy

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at
http://www.quantumoptics.at

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>