Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communication in an Indirect Way

06.03.2013
Organic materials are comparatively poor conductors of electricity. Under certain conditions, however, this can change significantly. University of Würzburg physicists have now experimentally determined how exactly such a change in conductivity works in a two-dimensional layer.

Organic semiconductor materials have numerous advantages: They are inexpensive to synthesize in large quantities, easy to process, mechanically flexible and resource-efficient.


If a monolayer of organic molecules is deposited on a metal substrate, the conductivity of the organic material is significantly enhanced – as University of Würzburg physicists have just found out.
Graphics Peter Puschnig, Michael Wießner

However, their large-scale use in technological applications, such as optoelectronic components, is hampered by the fact that they generally conduct electric current rather poorly. But their conductivity can increase significantly in special conditions. Together with scientists from Graz and Hiroshima, University of Würzburg physicists have now clarified the reason why this is possible. Their research is reported in the current issue of the journal Nature Communications.

The experiment

"If organic molecules are deposited on a metal surface, the direct bond between these molecules is usually relatively weak," Achim Schöll explains. "The individual molecules mainly interact with their substrate instead." Schöll, a private lecturer at the Department for Experimental Physics VII of the University of Würzburg, has been spending many years of research on molecules that might be used in organic semiconductor electronics. In his latest experiments, he was able to show that the rule about the weak intermolecular interaction does not always apply.

For this purpose, the physicists deposited an ordered one-molecule-thick monolayer of organic molecules on a metal substrate in an ultrahigh vacuum. "Thus, we virtually created a two-dimensional semiconductor, in which the arrangement of the molecules is determined by the metal substrate," Schöll describes the method. When arranged in this way, the organic molecules exhibit quite unusual behavior.

The results

"We have verified that the electrons of the organic molecules now make contact with neighboring molecules – which process is mediated by the metal substrate," Schöll explains. In other words: The electron clouds of neighboring molecules assume a shared state, in which the metal is also involved. This facilitates the exchange of charge carriers, thus enhancing the conductivity of the organic material. What makes the results so fascinating is the fact that the molecules "communicate" with each other only indirectly by way of the metal substrate, as Schöll points out.

When conducting their measurements, the physicists came across another phenomenon as well: "The magnitude of this communication is highly direction-dependent," Schöll notes. This means that the two-dimensional layer of molecules is able to transfer charge carriers relatively easily in one specific direction whereas charge transport is significantly reduced in other directions. This is due to the internal structure of the molecules and their special arrangement on the metal substrate.
High degree of technological sophistication

The specimens used by the Würzburg physicists look like fingernail-sized metal disks. There is more to them than meets the eye, though, their preparation and examination involving a high degree of technological sophistication. In order to create layers of sufficient purity and order, for instance, you need a so-called ultrahigh vacuum, an extreme vacuum where the residual gas atoms are few and far between. In such a vacuum chamber, the pressure does not exceed 10 to the power of -10 millibar, which is below the pressure in near-earth space.

High tech equipment is also used to trace the behavior of the electrons in the specimen – the relevant method is called angle resolved photoelectron spectroscopy. An electron storage ring, i.e. a type of particle accelerator, producing so-called synchrotron radiation, serves as a source of UV radiation, which enables the researchers to take a look into the nanoworld.

The next steps

"This work is basic research in the field of nanoanalytics," says Schöll. For any future applications, however, it is essential to comprehend the complex interactions between organic molecules and the metal substrate. With their publication in Nature Communications, the researchers have by no means exhausted this topic. In further experiments, Schöll now intends to explore how a combination of various molecules, another substrate and a different arrangement of the molecules impact on the behavior of the electrons. The results from these experiments might be used to produce tailored two-dimensional networks with special electronic properties.

Substrate-mediated band-dispersion of adsorbate molecular states. M. Wießner, J. Ziroff, F. Forster, M. Arita, K. Shimada, P. Puschnig, A. Schöll & F. Reinert. Nature Communications, DOI: 10.1038/ncomms2522

Contact person
PD Dr. Achim Schöll, T: (0931) 31-85127, achim.schoell@physik.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht UNLV study unlocks clues to how planets form
13.12.2018 | University of Nevada, Las Vegas

nachricht Unprecedented Views of the Birth of Planets
13.12.2018 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>