Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colliding lasers double the energy of proton beams

27.05.2019

Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough could lead to more compact, cheaper equipment that could be useful for many applications, including proton therapy.

Proton therapy involves firing a beam of accelerated protons at cancerous tumours, killing them through irradiation. But the equipment needed is so large and expensive that it only exists in a few locations worldwide.


A standard laser generated proton beam is created through firing a laser pulse at a thin metallic foil. The new method involves instead first splitting the laser into two less intense pulses, before firing both at the foil from two different angles simultaneously. When the two pulses collide on the foil, the resultant electromagnetic fields heat the foil extremely efficiently. The technique results in higher energy protons whilst using the same initial laser energy as the standard method.

Credit: Yen Strandqvist/Chalmers University of Technology

Modern high-powered lasers offer the potential to reduce the equipment's size and cost, since they can accelerate particles over a much shorter distance than traditional accelerators - reducing the distance required from kilometres to metres.

The problem is, despite efforts from researchers around the world, laser generated proton beams are currently not energetic enough. But now, the Swedish researchers present a new method which yields a doubling of the energy - a major leap forward.

The standard approach involves firing a laser pulse at a thin metallic foil, with the interaction resulting in a beam of highly charged protons. The new method involves instead first splitting the laser into two less intense pulses, before firing both at the foil from two different angles simultaneously.

When the two pulses collide on the foil, the resultant electromagnetic fields heat the foil extremely efficiently. The technique results in higher energy protons whilst using the same initial laser energy as the standard approach.

"This has worked even better than we dared hope. The aim is to reach the energy levels that are actually used in proton therapy today. In the future it might then be possible to build more compact equipment, just a tenth of the current size, so that a normal hospital could be able to offer their patients proton therapy," says Julien Ferri, a researcher at the Department of Physics at Chalmers, and one of the scientists behind the discovery.

The unique advantage of proton therapy is its precision in targeting cancer cells, killing them without injuring healthy cells or organs close by. The method is therefore crucial for treating deep-seated tumours, located in the brain or spine, for example. The higher energy the proton beam has, the further into the body it can penetrate to fight cancer cells.

Although the researchers' achievement in doubling the energy of the proton beams represents a great breakthrough, the end goal is still a long way off.

"We need to achieve up to 10 times the current energy levels to really target deeper into the body. One of my ambitions is to help more people get access to proton therapy. Maybe that lies 30 years in the future, but every step forward is important," says Tünde Fülöp, Professor at the Department of Physics at Chalmers.

Accelerated protons are not only interesting for cancer treatment. They can be used to investigate and analyse different materials, and to make radioactive material less harmful. They are also important for the space industry.

Energetic protons constitute a large part of cosmic radiation, which damages satellites and other space equipment. Producing energetic protons in the lab allows researchers to study how such damage occurs, and to develop new materials which can better withstand the stresses of space travel.

Together with research colleague Evangelos Siminos at the University of Gothenburg, Chalmers researchers Julian Ferri and Tünde Fülöp used numerical simulations to show the feasibility of the method. Their next step is to conduct experiments in collaboration with Lund University.

"We are now looking at several ways to further increase the energy level in the proton beams. Imagine focusing all the sunlight hitting the Earth at a given moment onto a single grain of sand - that would still be less than the intensity of the laser beams that we are working with. The challenge is to deliver even more of the laser energy to the protons." says Tünde Fülöp.

The new scientific results have been published in the respected journal Communications Physics, part of the Nature family. Read the scientific article "Enhanced target normal sheath acceleration using colliding laser pulses".

###

More about the research:

The research has been financed by the Knut and Alice Wallenberg Foundation, within the framework for the project "Plasma based compact ion sources". (Link in Swedish)

Other financiers include the European Research Council and the Swedish Research Council. The simulations have been done at the national data centre Chalmers Centre for computational Science and Engineering. (C3SE)

For more information, contact:

Tünde Fülöp, Professor, Department of Physics, Chalmers University of Technology +46 72 986 74 40, tunde.fulop@chalmers.se

Julien Ferri, Postdoctoral researcher, Department of Physics, Chalmers University of Technology, +46 70 986 74 76, julien.ferri@chalmers.se

Evangelos Siminos, Assistant Professor, Department of Physics, University of Gothenburg, +46 31 786 91 61, evangelos.siminos@physics.gu.se

Media Contact

Joshua Worth
joshua.worth@chalmers.se
46-317-726-379

 @chalmersuniv

http://www.chalmers.se/en/ 

Joshua Worth | EurekAlert!
Further information:
http://www.chalmers.se/en/departments/physics/news/Pages/Colliding-lasers-double-the-energy-of-proton-beams.aspx
http://dx.doi.org/10.1038/s42005-019-0140-x

More articles from Physics and Astronomy:

nachricht Colloidal Quantum Dot Photodetectors can now see further than before
21.01.2020 | ICFO-The Institute of Photonic Sciences

nachricht Compact broadband acoustic absorber with coherently coupled weak resonances
21.01.2020 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

New self-assembled monolayer is resistant to air

22.01.2020 | Life Sciences

Ultrafast camera takes 1 trillion frames per second of transparent objects and phenomena

22.01.2020 | Power and Electrical Engineering

Mosquitoes are drawn to flowers as much as people -- and now scientists know why

22.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>