Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From One Collapsing Star, Two Black Holes Form and Fuse

07.11.2013
Black holes—massive objects in space with gravitational forces so strong that not even light can escape them—come in a variety of sizes.

On the smaller end of the scale are the stellar-mass black holes that are formed during the deaths of stars. At the larger end are supermassive black holes, which contain up to one billion times the mass of our sun.


The various stages encountered during the collapse of a fragmenting supermassive star. Each panel shows the density distribution in the equatorial plane. The star is so rapidly spinning that the configuration at the onset of the collapse (upper left panel) is quasi-toroidal (the maximum density is off-centered thus producing a ring of maximum density). The simulation ends after the black hole has settled (lower right panel).

Credit: Christian Reisswig/Caltech

Over billions of years, small black holes can slowly grow into the supermassive variety by taking on mass from their surroundings and also by merging with other black holes. But this slow process can't explain the problem of supermassive black holes existing in the early universe—such black holes would have formed less than one billion years after the Big Bang.

Now new findings by researchers at the California Institute of Technology (Caltech) may help to test a model that solves this problem.

Certain models of supermassive black hole growth invoke the presence of "seed" black holes that result from the deaths of very early stars. These seed black holes gain mass and increase in size by picking up the materials around them—a process called accretion—or by merging with other black holes. "But in these previous models, there was simply not enough time for any black hole to reach a supermassive scale so soon after the birth of the universe," says Christian Reisswig, NASA Einstein Postdoctoral Fellow in Astrophysics at Caltech and the lead author of the study. "The growth of black holes to supermassive scales in the young universe seems only possible if the 'seed' mass of the collapsing object was already sufficiently large," he says.

To investigate the origins of young supermassive black holes, Reisswig, in collaboration with Christian Ott, assistant professor of theoretical astrophysics, and their colleagues turned to a model involving supermassive stars. These giant, rather exotic stars are hypothesized to have existed for just a brief time in the early universe. Unlike ordinary stars, supermassive stars are stabilized against gravity mostly by their own photon radiation. In a very massive star, photon radiation—the outward flux of photons that is generated due to the star's very high interior temperatures—pushes gas from the star outward in opposition to the gravitational force that pulls the gas back in. When the two forces are equal, this balance is called hydrostatic equilibrium.

During its life, a supermassive star slowly cools due to energy loss through the emission of photon radiation. As the star cools, it becomes more compact, and its central density slowly increases. This process lasts for a couple of million years until the star has reached sufficient compactness for gravitational instability to set in and for the star to start collapsing gravitationally, Reisswig says.

Previous studies predicted that when supermassive stars collapse, they maintain a spherical shape that possibly becomes flattened due to rapid rotation. This shape is called an axisymmetric configuration. Incorporating the fact that very rapidly spinning stars are prone to tiny perturbations, Reisswig and his colleagues predicted that these perturbations could cause the stars to deviate into non-axisymmetric shapes during the collapse. Such initially tiny perturbations would grow rapidly, ultimately causing the gas inside the collapsing star to clump and to form high-density fragments.

These fragments would orbit the center of the star and become increasingly dense as they picked up matter during the collapse; they would also increase in temperature. And then, Reisswig says, "an interesting effect kicks in." At sufficiently high temperatures, there would be enough energy available to match up electrons and their antiparticles, or positrons, into what are known as electron-positron pairs. The creation of electron-positron pairs would cause a loss of pressure, further accelerating the collapse; as a result, the two orbiting fragments would ultimately become so dense that a black hole could form at each clump. The pair of black holes might then spiral around one another before merging to become one large black hole. "This is a new finding," Reisswig says. "Nobody has ever predicted that a single collapsing star could produce a pair of black holes that then merge."

Reisswig and his colleagues used supercomputers to simulate a supermassive star that is on the verge of collapse. The simulation was visualized with a video made by combining millions of points representing numerical data about density, gravitational fields, and other properties of the gases that make up the collapsing stars.

Although the study involved computer simulations and is thus purely theoretical, in practice, the formation and merger of pairs of black holes can give rise to tremendously powerful gravitational radiation—ripples in the fabric of space and time, traveling at the speed of light—that is likely to be visible at the edge of our universe, Reisswig says. Ground-based observatories such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), comanaged by Caltech, are searching for signs of this gravitational radiation, which was first predicted by Albert Einstein in his general theory of relativity; future space-borne gravitational-wave observatories, Reisswig says, will be necessary to detect the types of gravitational waves that would confirm these recent findings.

Ott says that these findings will have important implications for cosmology. "The emitted gravitational-wave signal and its potential detection will inform researchers about the formation process of the first supermassive black holes in the still very young universe, and may settle some—and raise new—important questions on the history of our universe," he says.

These findings were published in Physical Review Letters the week of October 11 in a paper titled "Formation and Coalescence of Cosmological Supermassive-Black-Hole Binaries in Supermassive-Star Collapse." Caltech coauthors authors on the study include Ernazar Abdikamalov, Roland Haas, Philipp Mösta. Another coauthor on the study, Erik Schnetter, is at the Perimeter Institute for Theoretical Physics in Canada. The work was funded by the National Science Foundation, NASA, the Alfred P. Sloan Foundation, and the Sherman Fairchild Foundation.

Jessica Stoller-Conrad | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>