Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coffee machine helped physicists to make ion traps more efficient

29.04.2019

Scientists from ITMO University have developed and applied a new method for analyzing the electromagnetic field inside ion traps. For the first time, they explained the field deviations inside nonlinear radio-frequency traps. This allows to reconsider the prospects nonlinear traps applications, including ion cooling and studies of quantum phenomena. The results are published in the Journal of Physics B.

Ion traps can localize and restrain individual charged particles in a confined space for subsequent manipulations with these particles, such as displacing or even cooling.


Experimental setup for new ion traps examination.

Credit: ITMO University

Cooling of an ion basically means reducing its kinetic energy, which almost completely "freezes" this ion. Scientists believe that in future this technique will help to observe quantum phenomena with the bare eye.

Types of radio-frequency traps differ in the frequency and configuration of the field inside them. In order to cool uncharged particles, usually more convenient optical traps are used. However, radio-frequency traps allow to cool charged particles to lower temperatures.

Physicists from ITMO University actively study radio-frequency traps and look for new ways to make them more effective. In their new research, they have proposed a new approach for more accurate analysis of electromagnetic field inside a nonlinear radio-frequency trap

. Unlike simple linear traps, in which an ion is restrained in only one spot of the trap area, particles in nonlinear traps can be "caught" in several spots. Previously developed models were appropriate only for simple traps, since they could not explain the field symmetry violation that occurs in nonlinear traps. The proposed model is more universal as it explains the symmetry breaking and is suitable for describing both simple and complex traps.

"Our research, which resulted in a new technique, began with a coffee cup. I really enjoy it and often use a coffee machine at work. Annoyingly, my cup always slides on the tray during the coffee preparation. And each time it does so in different directions, which means that this not caused by the overall tilt of the machine. I have studied the literature on vibromechanics and came to the conclusion that so-called nonlinear friction is to blame. Then I realized that this phenomenon can be found in radio-frequency traps that we study. We have applied the method of complete separation of motion conventionally used in vibromechanics and suddenly found that this allows to describe previously unexplained symmetry breaking in the traps!" says Semyon Rudyi from Nonlinear Optics Laboratory at the ITMO University.

Scientists have tested their method on the experimental data obtained in previous studies. Old models of radio-frequency trapping were unable to explain strange deviations that take place in nonlinear traps, which limited the prospects of nonlinear traps application. Within the framework of the proposed model, these deviations were fully justified. New approach helps to predict and control the localization of charged particles for different electrode positions and voltages. This is necessary to create more efficient radio-frequency traps for various applications.

"Even though this work is theoretical, it is closely related to practice. Our group develops new designs of radio-frequency traps and constructs them to consequently localize various charged particles. We also theoretically investigate nanocrystals deeply cooled in these traps, since these particles can model quantum effects. Our studies often bring unexpected interesting results and bring us closer to interaction with quantum phenomena," notes Tatiana Vovk from Laboratory of Modeling and Design of Nanostructures at the ITMO University.

###

Reference: Features of the effective potential formed by multipole ion trap
Semyon Rudyi, Tatiana Vovk and Yuriy Rozhdestvensky
Journal of Physics B. 16 April 2019
https://iopscience.iop.org/article/10.1088/1361-6455/ab14a2

Media Contact

Dmitry Malkov
dvmalkov@corp.ifmo.ru
7-953-377-5508

 @spbifmo_en

http://en.ifmo.ru/ 

Dmitry Malkov | EurekAlert!

More articles from Physics and Astronomy:

nachricht Physicists trap light in nanoresonators for record time
23.01.2020 | ITMO University

nachricht Colloidal Quantum Dot Photodetectors can now see further than before
21.01.2020 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>